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Abstract 

Climate change, population growth and increasingly strict environmental regulation means the 

global water industry is currently facing an unprecedented coincidence of challenges (Palmer, 

2010). Better microbial ecology could significantly contribute, since explicitly engineering and 

maintaining efficient and functionally stable microbial communities would allow existing assets to 

be optimised and their robustness improved. Given its role in natural systems viral infection could 

be an important, yet overlooked, factor. Here we attempt to address this lacuna, particularly 

within activated sludge systems.  

To facilitate this process we developed, optimised and validated a flow cytometry method, 

allowing rapid (relative to other methods), accurate and highly reproducible quantification of total 

free viruses in activated sludge samples (mixed liquor (ML)). Its use spatially identified viruses are 

highly abundant, with concentrations ranging from 0.59 - 5.14 × 109 viruses mL-1 across 25 

activated sludge plants.  

Subsequently we applied this method to ML collected from one full- and twelve replicate lab-scale 

activated sludge systems respectively. At both scales viruses in the ML were shown to be both 

abundant and temporally/spatiotemporally dynamic, thus ever present across activated sludge 

systems. Through statistical inference they were shown to be associated (positively) with total 

host (bacterial) abundance, with microbial community structure and with a systems function (the 

removal of COD and NH4
+-N from influent wastewaters), whilst exogenous factors, particularly 

those involved in adsorption processes, played an important role in their dynamics.  

Evidence of predator-prey dynamics between a subset of measured viruses and a key functional 

group (ammonia oxidising bacteria (AOB)) within the full-scale system is also presented, whilst a 

detailed examination of all garnered abundances highlights the relative abundance of viruses, as 

reported in marine systems, declined with increasing host density. Finally preliminary 

metagenomic data shows wastewater viromes are largely phylogenetically and functionally 

uncharacterised, yet relative abundances of known viruses vary throughout the wastewater 

treatment stream.  

Considering the evidence presented viruses appear to play a more central role in the dynamics of 

activated sludge systems than hitherto realised and thus should be considered more frequently 

when assessing the key factors governing bacterial abundance, community composition and 

functional stability. 
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1.1. Background 

Biological wastewater treatment, in the form of aerobic (activated sludge, trickling filter, etc.) and 

anaerobic (upflow anaerobic sludge blanket, expanded granular sludge bed etc.) processes, is the 

largest application of biotechnology in the world (Wang et al., 2012a, see Appendix I for an 

introduction to wastewater treatment). By concentrating and managing microbial communities 

the beneficial activities of naturally occurring microorganisms are harnessed and accelerated, thus 

enabling the degradation of oxygen-depleting organics, transformation of toxic substances and 

removal of nutrients and pathogens from wastewaters (Wells et al., 2011; Wang et al., 2012a). 

Despite the successful and widespread application of these globally important processes the 

underpinning microbial communities have, until recently, been difficult to study. Little is known 

about the complex dynamics of the microbial populations interacting in bioreactors and how these 

dynamic interactions affect a systems performance and functional stability (Valentin-Vargas et al., 

2012). Thus our fundamental knowledge and understanding of how such processes actually work 

is lacking.  

Current practice in wastewater treatment plant design was established in the 1960’s when 

Downing et al. (1964) and Lawrence and McCarty (1970) developed a theory combining simple 

mass balance concepts with Monod Kinetics (Curtis and Sloan, 2006). They consider waste 

biodegradation as a problem in chemical thermodynamics, where groups of microorganisms are 

seen as omnipresent catalysts. All that an engineer need do is ensure the correct environmental 

and chemical conditions prevail for a function to be fulfilled. Such tools however, do not always 

predict the engineered reality, thus engineers are never sure if they have the optimal microbial 

community for the desired function, if they can establish new functions or if they can restore 

functions that have been lost (Curtis and Sloan, 2006). Moreover the inherent robustness of a 

system, that is its ability to resist inhibition or shock loading, is simply unknown, thus failure in 

such systems is common, unpredictable and often inexplicable (Curtis and Sloan, 2006).  These 

deficiencies arise because whilst we can predict the size of a system we cannot predict its 

composition or community structure, the two things that ultimately define its operational 

characteristics (Curtis and Sloan, 2006).  

Hitherto our inability to do this has been tolerable; however the global water industry is currently 

facing an unprecedented coincidence of challenges (Palmer, 2010). Climate change and its 

mitigation is requiring water companies to minimise their carbon footprint, increasing energy, and 

therefore operating, costs, which is undermining their profit margins (Palmer, 2010). Moreover 

rapid and localised population growth, coupled with increasingly strict environmental regulation, 
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is requiring additional and more advanced levels of wastewater treatment, thus necessitating 

further investment in and development of the capacity and capability of a water company’s asset 

base (Palmer, 2010; Shoener et al., 2014). These issues are compounded by the long life span of 

capital assets, varying from 15 - 30 years for mechanical and electrical assets and 30 – 60 years (or 

more) for civil assets, as it may take a generation to replace them with more energy efficient 

formats  (Palmer, 2010). Consequently explicitly engineering and managing the best microbial 

community is of increasing strategic importance, by doing so existing assets can be optimised, in 

terms of treatment quality, energy efficiency and the functions required, and robustness 

improved. In order to achieve this and facilitate rational improvements in system design and 

operation a firm understanding of the microbial ecology of wastewater treatment bioreactors 

(WWTB’s) is essential.  

The advent and application of a plethora of new culture independent molecular tools namely: 

quantitative polymerase chain reaction (qPCR), fluorescence in situ hybridisation (FISH), terminal 

restriction fragment length polymorphism (T-RFLP) and more recently pyrosequencing holds 

promise for providing new insights into this “black box”. Using such techniques wastewater 

engineers have elucidated the microbiology of important wastewater treatment processes, 

including nitrogen transformations (Schmidt et al., 2003), biological phosphorous removal 

(Seviour et al., 2003) and anaerobic degradation networks (Talbot et al., 2008). Moreover much 

progress has been made in ascertaining the microbial basis for filamentous bulking (Martins et al., 

2004) and foaming (Blackall et al., 1996; Davenport et al., 2000) in activated sludge processes. 

However perhaps the most exciting and significant advancement facilitated by these techniques 

is the ability to now link a systems performance and function with the dynamics of its microbial 

community. 

There is a growing body of evidence linking community composition and diversity with the 

function (or performance) and stability of a WWTB, a concept borrowed from microbial ecology 

(Cook et al., 2006; Figuerol and Erijman, 2010; Saikaly and Oerthe, 2011; Hernandez-Raquet et al., 

2013). The function and functional stability of natural systems has been proposed to correlate 

with species richness, the number of species, and evenness, the relative abundance of a species 

(Naeem and Li, 1997; Stirling and Wilsey, 2001; Tilman et al., 1997; Wittebolle et al., 2009a). 

Species richness promotes increased productivity (or treatment performance) through resource 

(oxygen depleting organics, toxic substances, nutrients) partitioning and complimentary 

functional traits, thus more of the overall resource is consumed (Cardinale et al., 2002; Bell et al., 

2005; Latta et al., 2011). Moreover there is an increased probability of a species with a large effect 
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on the ecosystem function (process performance) being present (Bell et al., 2005). Species 

evenness increases functional redundancy and thus increases resistance to a perturbation 

(inhibition or shock loading), in that it ensures the presence of a reservoir of species able to 

perform the same ecological function (treatment process) (Briones and Raskin, 2003; Wittebolle 

et al., 2009a). Thus to break new ground in the treatment of wastewater one could argue 

answering the fundamental question of what dictates community composition and diversity in 

such systems is paramount (Pholchan et al., 2013). 

Ample inspiration for those seeking such an answer can be found in classical ecological literature, 

since the rules governing engineered and natural systems should be alike as the microbe is 

unaware of the distinction (Pholchan et al., 2013). With respect to community assembly one can 

borrow from two opposing, but not mutually exclusive, perspectives (Pholchan et al., 2013). 

Classically microbial community composition is thought to be shaped by deterministic factors such 

as competition and niche differentiation, where spatial and temporal environmental 

heterogeneity dictates (Tilman, 2004; Ofiteru et al., 2010). Accordingly numerous studies have 

revealed that certain environmental/operational conditions exert a distinctive selective pressure, 

indicating the important contribution of niche based mechanisms on community assembly and 

dynamics in WWTB’s (Van der Gast et al., 2004, 2008; Dytczak et al., 2008; Wittebolle et al., 2009b; 

Wells et al., 2009, 2011; Huang et al., 2010; Falk and Wuertz, 2010;).  

However not all temporal variations in community composition are related to operational and/or 

environmental parameters. The finding that replicated communities undergo erratic changes in 

time and the fact that distinct communities develop even when great care is taken to operate 

bioreactors in parallel, under identical environmental conditions has led to an opposing 

perspective: neutral theory (Fernandez et al., 2000; Kaewpipat and Grady, 2002; Gentile et al., 

2007; Beecroft et al., 2012). In neutral theory the formation of a community is viewed as a 

stochastic process, in which all species are ecologically equivalent and colonise an environment 

due to an amalgamation of random, continuous processes, birth, death, dispersal and speciation 

(Bell, 2001; Hubbell, 2001). Despite its apparent simplicity and small number of parameters 

neutral theory has been successfully observed in and applied to microbial communities (Sloan et 

al., 2006, 2007; Woodcock et al., 2007). In fact Ofiteru et al. (2010) showed that the population 

dynamics of an activated sludge community in California were consistent with neutral community 

assembly, with chance and random immigration playing an important and predictable role. For 

two AOB and two heterotrophic taxa they were able to explain 23% and 20% respectively of the 

variance in the time series data of abundance using purely neutral processes (Ofiteru et al. 2010).  
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Intuitively however we know that community assembly and development is not as black and 

white; in reality the two perspectives are not mutually exclusive because birth, death and 

immigration are unavoidable features of microbial life whose rates are affected by niche 

differentiation (Gravel et al., 2006; Pholchan et al., 2013). Indeed neutral and deterministic 

components have been shown to operate simultaneously in the community assembly of activated 

sludge flocs (Ayarza et al., 2010; Ayarza and Erijman, 2011), activated sludge bioreactors (van der 

Gast et al., 2008; Valentin-Vargas et al., 2012) and microbial electrolysis cells (Zhou et al., 2013). 

Likewise when Ofiteru et al. (2010) supplemented neutral processes with environmental influence, 

by giving an advantage to the reproduction (or birth) rate of individual taxa, a larger percentage 

of the AOB and heterotroph variability through time could be explained, 37% and 28% respectively.  

Whilst microbial ecologists and wastewater engineers have only recently attempted to explain 

community assembly by incorporating both components (Tilman, 2004; Gravel et al., 2006; 

Haegeman and Loreau, 2011), what is striking, at least when looking at the data of Ofiteru et al. 

(2010), is the substantial amount of unexplained variation. The authors suggest this could be 

attributable to unmeasured environmental factors, a nonlinear relationship between 

environment and advantage or substantial measurement error due to methodological limitations 

(Ofiteru et al., 2010). Whilst these are conceivable and will undoubtedly account for some of the 

discrepancy one could argue that a vital driver of microbial community assembly and development 

is still not accounted for in such neutral-niche models, thus a major portion of what dictates 

function and functional stability in WWTB’s is still unknown.  One can again look to ecological 

literature to identify additional drivers of diversity in natural systems, for these should again be 

applicable in an engineered setting.   

When looking at natural microbial communities what becomes apparent is the presence of an 

additional layer of complexity, in that bacteria and/or archaea are subject to strong predation 

pressure from viruses and, to a lesser extent, protozoan bacteriovores (e.g. ciliates and flagellates) 

(McMahon et al., 2007). Subsequently bacterial fitness is measured not only by their adaptation 

to available resources, environmental conditions (the niche) and stochastic processes (the neutral) 

but also by their adaptation to the biotic environment (Rodriguez-Valera et al., 2009).  

Bacteriophage (viruses whom attack bacteria) predation is thus a major cause of bacterial 

mortality and consequently is thought to be a key driver in the functional structure (composition), 

functional stability and metabolic characteristics and activity (carbon and nutrient cycling) of 

naturally occurring bacterial communities (Rodriguez-Valera et al., 2009; Winter et al., 2010; 

Breitbart, 2012). It seems plausible that such processes are at work in engineered biological 
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systems and thus their effect on community composition and diversity and subsequently on 

function and functional stability could be important.  

1.2 Viruses in Wastewater Treatment Processes 

Viruses, including bacteriophage, (see Appendix II for an introduction to bacteriophage) are long 

known to be found in WWTB’s (Ewert and Paynter, 1980; Ogata et al., 1980), however only very 

recently have estimates of abundance sparked interest in their potential role in the ecology of 

such systems. A trend perhaps analogous to, although slightly lagging, phage research in natural, 

chiefly aquatic systems (Weinbauer, 2004; Breitbart, 2012). Otawa et al. (2007) applied 

epifluorescence microscopy (EFM) to estimate total viral abundance in 18 full scale activated 

sludge bioreactors, reporting concentrations of 108 – 109 virus like particles (VLP) mL-1. Similar 

values were reported for an activated sludge plant in Singapore (Wu and Liu, 2009) and for 

anaerobic digesters treating waste activated sludge (Wu and Liu, 2009), brewery waste (Park et 

al., 2007) and acetate (Chien et al., 2013) respectively. These studies highlight the fact that viral 

abundance in WWTB’s is amongst the highest, if not the highest studied in any system (Wommack 

and Colwell, 2000).  

Phage diversity has also been estimated in WWTB’s. Using pulsed field and field inversion gel 

electrophoresis (PFGE, FIGE), which separate phage populations based on genome size, the 

composition of phage communities has been shown to vary between activated sludge plants and 

over time in a lab scale bioreactor (Otawa et al., 2007), as well as between different stages of a 

full scale treatment process (Park et al., 2007; Wu and Liu, 2009). Though we can infer from these 

studies that phage community composition is variable across time and space only highly abundant 

genomes are detected using these approaches and phages with similar genome sizes are not 

separated. More recently Tamaki et al. (2012) applied a metagenomic approach to investigate 

viral diversity in all four stages (influent, activated sludge, anaerobic digester and effluent) of a 

typical wastewater treatment plant. The study revealed a high degree of novelty in the diversity 

of the viral communities, a finding recently corroborated in a suite of anaerobic digesters 

(Calusinska et al., 2016), and highlighted < 5% of metagenomic sequences are similar to those 

present in other environments. Despite this the diversity estimates for the four viromes was 

moderate with 423 – 560 species recognised, a number comparable to that found in freshwater 

environments but lower than that found in oceans and soils (Tamaki et al., 2012). Interestingly a 

high number of viral genotypes (> 82%) were shared across the four viromes, although the 

abundance of individual species was variable. 
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1.2.1. The Role of Bacteriophages in Wastewater Treatment: Interactions with Microbial 

Community composition 

1.2.1.1 Kill the Winner 

Whilst bacteriophages are indisputably a dynamic and variable component of WWTB’s their 

impact on the microbial community and subsequently treatment performance of such systems is 

still inadequately understood. A commonly accepted model to describe phage-host interactions 

in microbial ecology is that of killing the winner (KtW), an extension of classical Lotka-Volterra 

predator prey dynamics to the microbial world (Thingstad and Lignell, 1997; Thingstad, 2000). In 

KtW the assumption is that bacterial communities contain two populations competing for the 

same limited resource (e.g. phosphate): competition specialists, that use the resource for growth 

and reproduction, and defence specialists, that utilise it to counteract stress (e.g. predation, 

unfavourable environmental conditions, or competitive ability) (Winter et al., 2010; Breitbart, 

2012). In the absence of predators the competition specialists would dominate, sequestering all 

of the limited resource (Breitbart, 2012). Intuitively one can see that if predation pressure results 

in the selective loss of competition specialists and prevents complete resource sequestering by 

this population then a share will become available to the defence specialists (Winter et al., 2010). 

The consequence of this phage control and resultant trade-offs (competitive vs. defensive ability) 

is coexistence, or in a different guise, maintenance, of a communities diversity and diversification 

(Weinbauer and Rassoulzadegan, 2004; Brockhurst et al., 2006; Hewson and Fuhrman, 2006, 

2007).   

One possible prediction of this model is the periodic rise and fall of specific bacterial hosts and 

their corresponding phages in a classical predator prey fashion, resulting in the cycling of the most 

dominant or active taxa (Fig. 1.1 A, Rodriguez-Brito et al., 2010; Shapiro and Kushmaro, 2011). 

Another implication is that some of the most active bacteria (competition specialists) may be rare 

in ambient communities due to high levels of phage pressure (Fig. 1.1 D, Harcombe and Bull, 2005; 

Suttle, 2007; Winter et al., 2010), conversely the most dominant bacteria may constitute defence 

specialists that are inferior competitors for resources but gain a selective advantage as a result of 

phage predation (Fig. 1.1 B, Bouvier and del Giorgio, 2007). It is noteworthy that KtW predicts that 

under highly productive conditions, such as those in a WWTB, predation is the major regulatory 

mechanism for community composition, whereas in environments with low productivity 

competition drives community composition (Winter et al., 2010). 
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Patterns consistent with KtW have recently been demonstrated in a full scale membrane 

bioreactor treating industrial wastewater, where PFU counts on several bacterial strains appeared 

to oscillate in correlation with their suggested hosts (Shapiro et al., 2010). A similar pattern was 

reported for a phage and its host inoculated into a laboratory scale activated sludge reactor (Lee 

et al., 2007), whilst the change in dominant strains of a full-scale system was attributed to strain 

specific phage predation (Ogata et al., 1980). Successive and significant shifts in the species 

composition of an anaerobic digesters bacterial community could also be attributed to cyclic 

phage predation (Zumstein et al., 2000), whilst fluctuating phage abundances in full and lab scale 

systems is also consistent with KtW dynamics (Hantula et al., 1991; Otawa et al., 2007).  

 

Figure 1. 1. Possible scenarios for temporal changes in host abundance as a consequence of viral infection, (A – D) described in the 
text. 

1.2.1.2 Antagonistic Coevolution 

An alternative mechanism describing phage host interactions is antagonistic coevolution (ACE), 

which can be viewed as a continuum (Fig. 1.1 C, Hall et al., 2011). At one extreme arms race 

dynamics (ARD) cause continual reciprocal evolution of host resistance and, to counter act this, 

phage infectivity (Buckling and Rainey, 2002; Forde et al., 2008; Gomez and Buckling, 2011), 

imposing directional selection for hosts and phages with broader resistance and infectivity ranges 
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respectively. At the other extreme fluctuating selection dynamics (FSD), in which there is no 

directional change in the evolution of resistance and infectivity ranges just inherent differences 

across genotypes, is governed by negative frequency-dependent selection, favouring hosts and 

phages that are resistant and infectious to the most frequently occurring phages and hosts 

respectively (Hall et al., 2011; Betts et al., 2014). Thus ACE, whether through ARD or FSD, is 

believed to play a critical role in phage host dynamics, speciation, coexistence and ultimately a 

system’s biodiversity and function (Buckling and Rainey, 2002; Gomez and Buckling, 2011). 

Interestingly, due to genetic (phage) and metabolic (host) constraints on mutation (Lenski and 

Levin, 1985; Bohannan and Lenski, 2000; Hall et al., 2011), ARD has been proposed to predominate 

during initial stages of coevolution, when mutations are largely cost-free, but then give way to 

FSD, when mutations impose costs (Hall et al., 2011). 

Possible evidence for such processes was reported for two geographically remote Enhanced 

Biological Phosphorus Removal (EBPR) bioreactors enriched with Candidatus Accumulibacter 

phosphatis (CAP), a phosphate accumulating organism (PAO) (Kunin et al., 2008). Both CAP 

communities were consistently exposed to viral activity and were dominated by one genetically 

similar strain, sharing 95% nucleotide identity across most of the genome. One striking difference 

was the variability in extracellular polymeric substance (EPS) expression and clustered regularly 

interspaced short palindromic repeat (CRISPR) elements, both of which serve as defence 

mechanisms against phage predation (Hughes et al., 1998; Sorek et al., 2008). The authors 

concluded that the differences were a result of recent ACE dynamics, were by rapid acquisition 

and substitution of EPS gene cassettes and CRISPR elements was a bacterial response to local 

phage predation pressure (Kunin et al., 2008). A similar explanation, i.e. local evolution of 

resistance, could be applied to two identical EBPR CAP dominated bioreactors run by He et al. 

(2010), where a random shift in the dominant CAP clade (Clade IA to Clade IIA) occurred within 

one reactor without any detectable environmental change. Conversely the evolution of phage 

infectivity, through the incorporation and expression of anti-CRISPR genes (Bondy-Denomy et al., 

2012; Bondy-Denomy et al., 2015), could have occurred, thereby incurring a fitness cost on Clade 

IA and giving a competitive advantage to Clade IIA. Such explanations could also be applicable to 

the 6 identical denitrifying bioreactors of Gentile et al. (2007), where the community structure in 

two diverged from the others, chiefly due to the increased abundance of one bacterial species. 

The demonstration of more than one infection cycle for phages targeting a single host could 

similarly be evidence of such dynamics in a wastewater environment, with several weeks or 

months separating each cycle (Huntula et al., 1991; Shapiro and Kushmaro, 2010). 
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1.2.1.3 Horizontal Gene Transfer 

Bacteriophages can also impact bacterial diversity via direct (by transduction) or indirect (by 

transformation) horizontal gene transfer (HGT) (Jacquet et al., 2010; Breitbart, 2012). 

Transformation consists of the assimilation and incorporation of free or extracellular DNA (eDNA) 

by bacteria, thus the lytic action of bacteriophages may stimulate this process and considerably 

enhance the reservoir of genetic information available (Jacquet et al., 2010; Breitbart, 2012). 

Transduction involves a portion of the genetic material of a host cell being packaged by a phage 

and transferred to a new host during infection (Weinbauer, 2004; Jacquet et al., 2010).  Both are 

followed by the subsequent expression of the transferred genetic traits in the recipient host. Thus 

HGT can contribute to genetic variation in host populations (alteration of metabolic properties, 

increased fitness, resistance to stress etc.), driving genetic evolution and consequently influencing 

population dynamics (Replicon et al., 1995; Chiura, 1997; Brussow et al., 2004; Weinbauer, 2004; 

Jacquet et al., 2010).  

The high concentration of eDNA in WWTB’s and its importance to floc and granule formation 

would imply the opportunity for transformation in such systems is high, however the direct effect 

of phage induced transformation in WWTB’s is difficult to quantify and currently unknown 

(Dominiak et al., 2011). In contrast the presence of transducing phage’s in WWTB’s was 

demonstrated by Sander and Schmieger (2001) and the potential for gene transduction 

highlighted by Parsley et al. (2010a), who detected diverse antimicrobial resistant genes in a 

metagenomic survey of both bacterial and viral communities from an activated sludge system. 

Colomer-Lluch et al. (2011) demonstrated through transfection, a non-viral transfer of nucleic 

acids, that antibiotic resistant genes originating from raw sewage phage isolates were able to 

confer resistance to a recipient bacterial strain, suggesting transduction processes could also do 

so. More recently estimates of the extent of phage mediated HGT in a municipal wastewater 

treatment plant was reported by Del Casale et al. (2011a, 2011b). Using bacterial 16S rRNA genes 

transduced from bacteriophages the authors reported that transduction occurs temporally in 

several dominant bacterial groups (proetobacteria, Firmicutes and Rhodococcus, Del Casale et al., 

2011a, 2011b).  

A further consideration to the importance of transduction is the presence of polyvalent 

bacteriophages, phages with a wide host range, in WWTB’s. Several studies have demonstrated 

polyvalent phage isolates in raw sewage (Namura et al., 2008; Synnott et al., 2009), bench scale 

(Khan et al., 2002a, 2002b) and full-scale activated sludge (Huntula et al., 1991; Thomas et al., 

2002) and membrane bioreactors (Shapiro and Kushmaro, 2010) respectively.  Such phages are 
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typically able to infect several strains of the same species, however some polyvalent phage 

isolates have been found to infect hosts from different bacterial classes (Jensen et al., 1998; 

Sullivan et al., 2003) as well as bacterial isolates with different gram staining (Khan et al., 2002a, 

2002b). Thus Fard et al. (2011) were able to demonstrate the transfer of genes between different 

taxa as a result of transducing polyvalent bacteriophages.  

Whilst transduction is irrefutably present in WWTB’s until recently it was considered a rare event, 

occurring once every 107 – 109 phage infections and thus having minimal impact on a systems 

bacterial community (Muniesa et al., 2013). A recent study, however, indicates that transduction 

may occur at a frequency several orders of magnitude greater than previously thought and in a 

wide range of bacteria (Kenzaka et al., 2010). With these frequencies, the presence of transducing 

polyvalent bacteriophages and the sheer abundance of phages and hosts found in WWTB’s gene 

transfer by transduction could take place an exceptional number of times per second (Muniesa et 

al., 2013). Consequently transducing phages could mediate the mobilisation and transfer of 

genetic material within WWTB’s and in nature to a far greater extent than previously thought. 

1.2.1.4 Lysogeny 

Lysogenic, or temperate, bacteriophages, phages that remain dormant within the host genome 

(known as a prophage) and replicate with it until a lytic cycle is induced (see Appendix II for more 

information), are also likely drivers of microbial dynamics within WWTB’s, since they can provide 

bacteria with virulence and fitness factors affecting cell metabolism, bacterial adhesion, 

colonisation, immunity and antibiotic resistance (Wagner and Waldor, 2002). Currently percent 

lysogeny, the percentage of bacterial cells in a community containing an inducible phage genome, 

is unknown in WWTB’s, however it is speculated that more than 80% of bacterial strains contain 

prophages (Canchaya et al., 2003). With this in mind and considering lysogeny may confer an 

ecological advantage in WWTB’s, since prophages are retained within the system and free phage 

particles are constantly washed out with process effluents, the lysogenic life cycle has the 

potential to be extremely influential on bacterial populations in such systems (Shapiro and 

Kushmaro, 2011). Its true influence however is still to be determined. 

1.2.2 The Role of Bacteriophages in Wastewater Treatment: Interactions with food web 

processes and biogeochemical cycles 

As agents of mortality phage’s also have the ability to influence biochemical cycling of nutrients, 

elements and both the flux and character of carbon, since  the lysis of host cells not only releases 

progeny virus particles but also cell debris (Jacquet et al. 2010; Winter et al., 2010).  This cell debris 
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is made up of a cocktail of dissolved molecules (sugars, proteins, peptides, amino acids, and 

nucleic acids), macro and micronutrients (e.g. phosphorous, nitrates, iron etc.) plus colloids and 

cell fragments, typically defined as dissolved organic matter (DOM) (Fuhrman, 1999; Jacquet et 

al., 2010; Winter et al., 2010). This DOM is then rapidly or eventually recycled back into the food 

web and becomes available for bacteria to consume. In oceans this so called viral shunt is 

suggested to account for ~20 – 30% of the daily carbon pool (Wilhelm and Suttle, 1999; Middelboe 

and Jorgensen, 2006; Suttle, 2007) and significantly increase dissolved levels of phosphorous, iron, 

selenium and organic nitrogen (Middelboe et al., 1996; Gobler et al., 1997; Wilhelm and Suttle, 

1999; Poorvin et al., 2004; Shelford et al., 2012). The net effect of this, illustrated by Fuhrman 

(1992) using a theoretical model, is that a system with 50% bacterial mortality from viruses, 

compared to a system with no viruses yet containing identical food webs, has 27% more bacterial 

respiration and production. In essence phage activity via the viral shunt has the potential to help 

maintain higher levels of biomass and productivity within a system. 

Possible evidence for such a process within WWTB’S was reported by Rosenberg et al. (2010) for 

a two-stage bioreactor treating oil refinery drainage water. The authors observed higher than 

expected organic carbon removal, 90% compared with the theoretically expected 69%, across the 

two-stage system. Virus counts indicated the presence of phage predation and pointed to a 

potential viral shunt type process, increasing bacterial productivity and thus organic carbon 

removal to levels greater then theoretically expected. Further evidence supporting viral shunt 

processes within WWTB’s is lacking, however the increased DOM, particulate matter degradation 

and biogas production observed in the anaerobic digestion of ultrasound pre-treated, compared 

with untreated, waste activated sludge perhaps also emphasises their potential contribution in 

WWTB’s (Braguglia et al., 2012a, 2012b). The increase in DOM likely maintains a higher 

bacterial/archaeal abundance and thus productivity; like the viral shunt, contributing to increased 

anaerobic digestion efficiency.  

1.2.3 The Role of Bacteriophages in Wastewater Treatment: Can they influence process 

performance? 

Although modest, literary evidence would imply bacteriophages can directly affect the microbial 

community in WWTB’s, however there is little indication of their role in functional performance 

(other than that aforementioned). It could be argued, since phage predation can drive microbial 

diversification, that phage activity maintains, and to some extent creates, the functional 

redundancy that confers stability of performance and resilience to perturbations within WWTB’s 

(Shapiro and Kushmaro, 2011). This functional redundancy then buffers the loss of key species 
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through phage predation, masking their true effect on a systems performance. One could also 

speculate that the bacterial/archaeal communities within WWTB’s, due to the rich resource 

environment, are dominated by defence specialists (Winter et al., 2010), hence phage predation 

has little effect on the most abundant and active taxa and thus system performance. Both notions 

however are yet to be tested. 

Perhaps an easier question to answer is the affect phages have on specific metabolic processes, 

such as nitrification, de-nitrification, phosphate accumulation and methanogenesis, within 

WWTB’s, since such processes are often dictated by a small number of distinct, functional 

microbes (Shapiro and Kushmaro, 2011). Possible evidence for the involvement of bacteriophages 

in the reduction of phosphorus (P) removal from a CAP enriched laboratory EBPR reactor was 

reported by Barr et al. (2010). To investigate further 4 additional EBPR reactors were inoculated 

with active biomass and then 2 of them spiked with supernatant from the original, failing reactor. 

Both “infected” reactors, when compared to the controls, exhibited negative P removal, strongly 

indicative of P release through cell lysis, and elevated phage counts, thus supporting the original 

hypothesis that phage activity was responsible for reduced P removal.  

Prophage induction, following copper (CU), cyanide and ciprofloxacin addition, has also been 

reported as a possible contributor to the reduced performance of a laboratory scale EBPR reactor 

(Motlagh et al., 2015). When compared to a control reactor a significant increase in phage 

abundance, coupled with a significant decrease in the most dominant CAP clades and P removal 

efficiency, was observed after spiking 0.5mg/l CU, 500µg/L cyanide and 0.05 – 0.4 µg/L 

ciprofloxacin respectively. Once induced it was also shown, through isolation and infection of fresh 

biomass, that the now free phage, following the lytic infection cycle, could also decrease P uptake 

rates and removal efficiency when compared to uninfected biomass.  

The lysogenic-lytic switch was also witnessed by Choi et al., (2010) in a pure culture of Nitrosospira 

multiformis 25196, a member of genus Nitrosospira which are active AOB in nitrifying activated 

sludge plants (Siripong and Rittmann, 2007; Whang et al., 2009), as a result of heavy metal 

(chromium) exposure and various other physico-chemical stress factors (pH, temperature and 

potassium cyanide). Increased phage counts, coupled with deterioration in ammonia oxidation, 

could be attributed to high and low pH levels (5 and 8), low concentrations of chromium (0.002 – 

0.1mM) and cyanide (0015 – 0.15mM) and higher than normal (35oC) temperatures. Foaming, 

biomass bulking and decreased process performance in WWTB’s are known outcomes of sudden 

temperature shifts (Morgan-Sagastume and Allen, 2003, 2005a, 2005b; Nadarajah et al., 2007), 

heavy metal surges (Stasinakis et al., 2003; Hu et al., 2004; You et al., 2009), wastewater toxicity 
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(Kim et al., 2011; Han et al., 2014) and pH shocks (Lü et al., 2008; Gao et al., 2010; Law et al., 2011). 

Thus massive prophage induction, caused by such stress factors, followed by the sudden lysis of a 

proportion of a WWTB’s microbial community could also cause such failures and thus can’t be 

ruled out as a possible, unexplored cause (Shapiro and Kushmaro, 2011). 

Indeed lytic bacteriophage have been shown to influence filamentous organisms associated with 

biomass bulking (Kotay et al., 2011) and sludge foaming (Khairnar et al., 2014; Liu et al., 2015) 

within activated sludge systems, albeit as a potential method of control. Kotay et al. (2011), using 

a lytic phage isolated from mixed liquor, showed biomass bulking caused by Haliscomenobacter 

hydrossis was significantly reduced following spiking of the isolated phage, whilst Liu et al. (2015) 

observed suppression in the abundance of a number of foaming associated filamentous Gordonia 

strains inoculated into mixed liquor following addition of isolated, infective bacteriophages. 

1.3 Insights from Natural Systems 

In reviewing recent work concerning phage ecology in WWTB’s it is apparent that our knowledge 

and understanding of phage dynamics in engineered systems, and their potential role in 

controlling bacterial abundance, community composition and ecosystem function,  is 

fundamentally lacking. This is particularly apparent when work in WWTB is compared to natural, 

chiefly marine, systems, where viruses are generally accepted as ecologically important 

components of the environment (Breitbart, 2012). Great insights thus can be gained by adopting 

approaches used in these environments, as well as learning from their shortfalls and future 

perspectives.  

1.3.1 Expanding the Spatial and Temporal Resolution of Viral Studies 

In the late 1980’s and throughout the 1990s marine viral ecology underwent a transformation 

following the development of culture independent enumeration techniques, namely transmission 

electron microscopy (TEM, Bergh et al., 1989), EFM (Hara et al., 1991; Hennes and Suttle, 1995) 

and flow cytometry (FCM, Marie et al., 1999; Brussaard, 2004), and thus the realisation that 

viruses were highly abundant throughout the global oceans (e.g. Jiang and Paul, 1994; Weinbauer 

et al., 1995; Bratbak et al., 1996; Li and Dickie, 2001). Thus the initial focus of this new era in 

marine viral ecology was the spatiotemporal dynamics of total virus numbers, viral production, 

the virus to bacteria/microbe ratio and their role in bacterial mortality (Brum and Sullivan, 2015). 

More recently the emergence of metagenomic based studies has made clear the incredible 

diversity of marine viruses (Breitbart et al., 2002; Breitbart et al., 2004) and that the composition 
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of viral assemblages changes in different geographic regions (Venter et al., 2004; Angly et al. 2006) 

and at different depths (Hurwitz and Sullivan, 2013). 

Whilst such studies underpin our understanding of virus dynamics within marine systems it is 

increasingly apparent that spatial and temporal studies are rather limited, a consequence of 

limited “ship time” and other logistical constraints, and that these snapshots of viral abundance 

and community composition are inadequate for describing the microbial ecology of marine 

systems (Hewson et al., 2006; Breitbart, 2012; Brum and Sullivan, 2015; Wigington et al., 2016), 

especially considering we lack an understanding of the degree of spatiotemporal variability that 

may exist. As such recent reviews in marine viral ecology have emphasised the need for 

functionally relevant time series data that is undertaken at appropriate temporal and spatial scales 

(Breitbart, 2012; Brum and Sullivan, 2015; Wigington et al., 2016). The incorporation of exogenous 

factors, typically sampled infrequently and using limited analytical techniques, into such studies 

has also been emphasised as a priority (Wigington et al., 2016), since variations across time and 

space have the ability to influence the life history traits of viruses and their hosts, e.g. growth, 

resistance and infectivity, and thus their abundance and diversity. 

1.3.2 Identifying True Viral Diversity 

Double stranded DNA (dsDNA) phages were generally thought to account for the majority of 

marine viruses (Wommack and Coldwell, 2000; Breitbart et al., 2004; Weinbauer, 2004). However 

the recent discovery of single stranded DNA (ssDNA) (Angly et al., 2006; Tucker et al., 2011; 

Labonte and Suttle, 2013) and RNA (Culley et al., 2006; Lang et al., 2009; Gustavsen et al., 2014) 

viruses in metagenomic studies, as well as in culture (Nagasaki, 2008), suggests a subset of the 

marine viral community has been overlooked. Indeed the abundance of ssDNA and RNA viruses in 

the ocean is currently unclear. Recent work indicates RNA viruses may be highly abundant 

(Steward et al., 2013), yet EFM and FCM based counts, believed to underestimate both viral types 

due to poor staining of their small genomes (Brussaard et al., 2000; Tomaro and Nagasaki, 2007; 

Holmfeldt et al., 2012), typically exceed corresponding TEM (which doesn't rely on nucleic acid 

staining) based counts, suggesting their contribution to the total viral pool may be small (Hennes 

and Suttle, 1995; Weinbauer and Suttle, 1997; Marie et al., 1999; Bettarel et al., 2000). 

Likewise the diversity of marine ssDNA and RNA viruses is unknown. ssDNA viruses were initially 

overlooked in diversity studies because their small genomes prevent inclusion in PFGE and FIGE 

analysis (Wommack et al., 1999; Steward et al., 2000), whilst their small particle size may have 

caused them to be lost during concentration procedures (Breitbart, 2012). Fundamentally 
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however, early metagenomic surveys solely targeted dsDNA viruses (e.g. Breitbart et al., 2004). 

Whilst the application of metagenomics to ssDNA and RNA viruses more recently has provided 

useful information about genome structure and diversity (Angly et al., 2006; Culley et al., 2006; 

Lang et al., 2009; Tucker et al., 2011; Labonte and Suttle, 2013; Gustavsen et al., 2014), the use of 

reverse transcription PCR and multiple displacement amplification, with their inherent biases 

(Culley et al., 2010; Kim and Bae, 2011), means the data is non-quantitative. Marine viral ecologists 

have thus called for a universal pipeline in which viruses of all nucleic acid types can be 

simultaneously and quantitatively studied, as well as techniques to accurately determine the 

contribution of each viral type to the total viral pool (Breitbart, 2012; Brum and Sullivan, 2015). 

1.3.3 Elucidating who infects whom 

Despite the apparent importance of virus-host interactions on bacterial community composition 

and ecosystem function knowledge in marine systems has been largely bottlenecked by 

cultivation and technical limitations (Dang and Sullivan, 2014). Only a fraction (<1%) of nature’s 

microbes grow under laboratory conditions (Rappé and Giovannoni, 2003) and few of the 50 

known bacterial phyla have cultured phages. The cultured representatives are dominated by 

Cyanobacteria, Proteobacteria and Bacteroidetes (Deng and Sullivan, 2014). Whilst such model 

systems are invaluable in testing experimental hypotheses and represent the gold standard for 

developing a mechanistic understanding of phage-host dynamics, such approaches are likely 

unable to map the immense network of such interactions in natural systems (Dang and Sullivan, 

2014). Consequently a suite of cultivation-independent methods have emerged to study virus-

host interactions in nature. These include viral tagging (Deng et al., 2012a, 2014), phageFISH 

(Allers et al., 2013), microfluidic digital PCR (Tadmor et al., 2011) and viral genome identification 

through single cell and fosmid genomic sequence mining (Mizuno et al., 2013; Rodriguez-Valera 

et al., 2014; Roux et al., 2014a; Labonté et al., 2015). It will be necessary to utilise these methods, 

individually or in combination, to unravel the complex nature of phage-host interactions in natural 

and engineered samples.   

1.4 Aims and Objectives  

Better microbial ecology could make a contribution to tackling the unprecedented coincidence of 

challenges the global water industry is currently facing.  However, the inability of niche and neutral 

components to adequately explain shifts in community composition and functional failures 

suggests that a better understanding of phage ecology in WWTB’s is a necessity. Especially since 

our current understanding is modest and suffers from the same methodical limitations and 
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shortfalls as that undertaken within marine systems. Therefore the aim of this research is to 

expand our knowledge in this exciting and potentially important arena by addressing the following 

objectives: 

 Develop a high throughput flow cytometric method to quantify total viral abundance in 

activated sludge samples, the most important biological wastewater treatment process. 

 Monitor total virus abundance in a full scale nitrifying activated sludge plant, describe 

their dynamics and assess their potential role in temporal bacterial dynamics and plant 

functions. 

 Monitor total virus abundance in replicate, lab scale nitrifying activated sludge reactors, 

describe their spatiotemporal dynamics and synchronicity and asses their potential role 

in spatiotemporal bacterial dynamics and plant functions. 

 Characterise the community structure and metabolic diversity of viruses throughout the 

wastewater treatment stream. 
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CHAPTER 2 
FLOW CYTOMETRIC QUANTIFICATION OF VIRUSES IN ACTIVATED SLUDGE 
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This chapter, in part, was published as: 

Brown, M. R., S. Camézuli, R. J. Davenport, E. Petelenz-Kurdziel, L. Øvreås and T. P. Curtis (2015). 

"Flow cytometric quantification of viruses in activated sludge." Water Research 68(0): 414-422. 

Viruses may play a critical role in the microbial dynamics of activated sludge systems; however the 

difficulty of their quantification makes long term and large scale studies costly, timely and 

challenging. Thus a flow cytometric protocol was optimised and employed to determine virus 

abundance in activated sludge samples. The best flow cytometry signatures and highest virus 

counts were obtained by separating the indigenous floc-associated viruses using Tween 80 and 

sodium pyrophosphate, diluting the sample with Tris-EDTA and staining with SYBR Green II. Using 

the optimised protocol viral concentrations from 25 activated sludge plants were determined, 

with average concentrations of 2.35 × 109 mL-1 observed. Direct counts by transmission electron 

microscopy were highly correlated with flow cytometric counts (p = < 0.05 and R2=0.77), with 

concentrations from both quantification methods comparable at the order of magnitude level. 

The high counting efficiency, ease of preparation and rapidity and reproducibility of analysis 

makes flow cytometric quantification of viruses in activated sludge ideal for routine investigation 

and thus invaluable in unravelling the complexity of phage host interactions in such systems.  

2.1. Introduction 

Bacteria are an integral part of activated sludge (AS) processes; dozens, perhaps hundreds, of 

different species play key roles in nutrient removal and the transformation and mineralisation of 

organic matter (Shapiro and Kushmaro, 2011). Consequently factors controlling bacterial 

abundance, diversity and activity are central to understanding, developing and predicting the 

behaviour of such processes. Among these factors, top down control through viral lysis could have 

an important role. Bacteriophages (viruses that infect bacteria) are the most abundant and diverse 

biological entities on earth, typically in the order of 107 mL-1 in most studied ecosystems, and are 

known to continuously regulate microbial ecology and activity by affecting carbon and nutrient 

fluxes, food web dynamics and microbial diversity and diversification (Suttle, 2007; Shapiro and 

Kushmaro, 2011). Whilst viruses, including bacteriophages, are known to be found at high 

abundance and diversity in AS (108 – 109 virus like particles (VLP) mL-1), they have proven difficult 

and time consuming to study (Otawa et al., 2007; Tamaki et al., 2012). Consequently our 

knowledge and understanding of phage ecology in AS processes, and their potential influence on 

these globally important processes, is limited. 
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Traditionally, viruses have been enumerated by culture based methods (Adams, 1959; Havelaar 

and Hogeboom, 1983; Kott, 1966) or by transmission electron microscopy (TEM) (Torrella and 

Morita, 1979; Bergh et al., 1989). The former is selective for host-specific infectious viruses, thus 

counts only represent a small fraction of the total population. Whilst the latter, though providing 

information on phage shape and size, is expensive, time consuming and lacks precision 

(Weinbauer, 2004). Over the past two decades the introduction of highly sensitive fluorescent 

nucleic acid-specific dyes (for example SYBR Green I, DAPI, and YOPRO-1) in combination with 

epifluorescence microscopy (EFM) has significantly improved the detection and quantification of 

viruses in aquatic ecosystems (Brussaard, 2004; Brussaard et al., 2010). EFM is considerably 

quicker, incurs lower costs and thus allows for a greater throughput of samples compared with 

TEM. With the introduction of flow cytometric detection and enumeration of free viruses, again 

in combination with sensitive nucleic acid-specific dyes, the sensitivity of detection, accuracy and 

precision of quantification and the speed of analysis has further improved. Consequently flow 

cytometry (FCM) has become the method of choice for quantifying viruses in aquatic samples 

(Brussaard et al., 2010). Despite this, virus abundance in AS has only been determined using TEM 

or EFM and not FCM, though the literature in this area is still modest (Ewert and Paynter, 1980; 

Otawa et al., 2007; Wu and Liu, 2009).  

The aim of this chapter was to critically describe a rapid FCM protocol to enumerate planktonic 

and floc-associated extracellular viruses in AS, to evaluate the protocol against that of Brussaard 

et al. (2010) and a TEM based approach, and to present virus abundance data from 25 AS plants.  

2.2. Materials and Methods 

2.2.1. Protocol Optimisation 

2.2.1.1. Samples 

AS samples were collected from a nitrifying domestic wastewater treatment plant (WWTP) in 

Tudhoe Mill, Durham, United Kingdom (UK), in March 2013. Samples were collected in 

polypropylene containers, stored at ~4oC during transit and fixed within 2 hours, as previously 

reported by Brussaard et al. (2004; 2010). Briefly 1 mL aliquots of each sample were transferred 

to 2 mL cryovials and fixed at a final concentration of 0.5% Glutaraldehyde for 15-30 minutes at 

4oC in the dark. After fixation aliquots were flash frozen in liquid nitrogen and stored at -80oC. 

Samples were thawed at room temperature and mixed via manual shaking for 10 seconds prior to 

pre-treatment. Once established optimal pre-treatments were used in subsequent experiments.  
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2.2.1.2. Pre-treatments for Dislodgment of Floc Bound Viruses 

2.2.1.2.1. Chemical Treatment 

Four dispersants, the surfactants - polyoxyethylene-sorbitan monooleate (Tween 80, Sigma) and 

Triton X-100 (TX, Sigma), and the ionic dispersants - sodium pyrophosphate (SP, Sigma) and 

sodium cholate (SC, Sigma), were tested separately and in combination at various concentrations 

as a sample pre-treatment for virus dislodgment from AS flocs (1 and 5% for Tween 80 and TX, 5 

and 10mM for SP and 0.1 and 1% for SC). Thus once thawed the dispersants were added to 

samples and incubated for 15 minutes in the dark at room temperature. All dispersants, with the 

exception of Tween 80, were autoclaved prior to use. Each treatment was analysed in triplicate, 

with a paired control (dispersant free samples) per replicate.  

2.2.1.2.2. Physical Treatment 

The effect of ultrasound treatment, in combination with chemical treatment, on virus dislodgment 

was tested using a sonicating water bath (Decon FS200b; 120W; 40 KHz), with 1 mL samples being 

run for 1, 2, 3, 5 and 8 minutes. Sonication was interrupted for 30 seconds every minute, during 

which time the samples were shaken manually (Danovaro et al., 2001). Each treatment was 

analysed in triplicate, with a paired control (samples without sonication) per replicate. 

2.2.1.3. Extracellular DNA Interference 

In order to eliminate the uncertainties in virus counting due to extracellular DNA (eDNA) a 

nuclease treatment was tested, since viral nucleic acids will generally be protected from DNase 

degradation by their protein capsids and sometimes by a lipid envelope (Allander et al., 2001; 

Breitbart and Rohwer, 2005). DNase I (Qiagen, UK), at concentrations of 1500 U µL-1 and 1.5 U µL-

1, was added to samples and incubated for 15 minutes in the dark at room temperature. Each 

treatment, in addition to a DNase free sample (control), was analysed in triplicate. 

2.2.1.4. Staining Optimisation 

SYBR Green I (SG I), SYBR Green II (SG II) and SYBR Gold (SG), used to stain double stranded DNA 

(dsDNA), single stranded DNA (ssDNA) and RNA and dsDNA, ssDNA and RNA respectively, were 

tested separately, to count specific virus communities, and in combination, to achieve the greatest 

total count, at various dilutions (0.5 × 10-4 and 1 × 10-4 of each stains stock solution respectively). 

To further optimise the staining procedure incubation temperatures of 75, 80 and 85oC were also 

investigated.  All stain combinations and incubation temperatures were analysed in triplicate. 
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2.2.2. Fluorescent Staining and FCM Analysis 

AS samples were diluted with TE-buffer (10 mM Tris-HCl 1 mM EDTA; pH 8.0) to achieve an event 

rate between 200 and 800 viruses s-1 and avoid coincidence (i.e., two or more viruses and/or 

particles being simultaneously within the sensing zone). To achieve this five 1 mL dilutions (1/500, 

1/750, 1/1000, 1/1250 and 1/1500) were prepared per replicate. Diluted samples were then 

stained using either Brussaard et al’s.(2010) protocol, 10 µL of 0.02 µm filtered SYBR Green I (0.5 

× 10–4 dilution of the commercial stock) for 10 minutes in the dark at 80°C, or variations of this 

regarding staining optimisation. Sample dilutions were analysed in triplicate using a FACScan flow 

cytometer (Becton Dickinson, California) equipped with a 15-mW 488-nm air-cooled argon-ion 

laser and a standard filter setup. The trigger was set on green fluorescence (GFL). Highly diluted 

and well-mixed yellow-green fluorescent microspheres (FluoSpheres, 1.0 µm diameter; Invitrogen, 

Molecular Probes; F8823) were added as an internal reference to all samples. Readings were 

collected in logarithmic mode (at least 5,000 events per sample) and analysed with FlowJo 

v10.0.7r2 (FlowJo LLC, Oregon). Data was collected using GFL/side scatter (SSC) dot plots and 

specified gates taken from Brussaard et al. (2010), V1, V2 and V3 which correspond to viruses of 

differing fluorescence intensity (total count = V1+V2+V3). This enabled optimal distinction 

between stained viruses and other microbial cells and/or background noise, thus filtration to 

remove such particles wasn't required. Blanks, consisting of TE-buffer and autoclaved 0.2-µm-

filtered sample, were pre-treated and analysed identically to samples, further facilitating the 

correction of virus counts for noise.  

2.2.3. Virus Recovery Efficiency 

AS samples, collected from Tudhoe Mill WWTP, were seeded with the dsDNA coliphage T4 (NCIMB, 

UK) and left for 15 minutes prior to fixing. Triplicate samples, with and without the seeded T4 

coliphage, were then prepared and analysed following both the optimised protocol and that of 

Brussaard et al. (2010). The seeded T4 abundance was determined by FCM (0.91 ± 0.04 × 109 VLP 

mL-1) and, for comparison, by plaque assay (1.0 ± 0.17 × 109 Viruses mL-1). Briefly 20 µL of the host 

isolate Escherichia coli was suspended in 8 mL of sterile sloppy agar (0.5% agar in nutrient broth 

medium) together with 20 µL of filter-fertilised (0.2 µm) T4 coliphage culture. The sloppy agar was 

then poured over a pre-warmed (37oC) nutrient agar plate and incubated for 2 days at 37oC. Plates 

were checked after 24 and 48 hours for plaque formation. The FCM seeded concentration of 0.91 

× 109 was used for calculations. 
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2.2.4. Virus abundance at a suite of AS WWTP’s 

AS samples were collected from 25 domestic WWTP’s situated within the North East of England, 

UK, in April and May 2013 (see Table 2.1 for plant configurations/characteristics). Triplicate 

samples were collected, fixed and then analysed using the optimised protocol. The mixed liquor 

(volatile) suspended solids (MLSS/MLVSS) were determined according to Standard Methods 

(APHA, 1989). 

Table 2. 1. WWTP details, AS process configurations and sample dates. 

WWTP Process Configuration  Aeration Wastewater Type TEP* Sampling Date 

Amble SBR Fine bubble Municipal  16607 02.05.13 
Aycliffe Conventional  Jet Municipal/Industrial  61106 04.04.13 
Berwick Conventional  Surface Municipal  15537 21.05.13 
Billingham Conventional  Fine bubble Municipal  35293 15.05.13 
Blyth SBR Fine bubble Municipal  37859 13.05.13 
Bowsden Oxidation Ditch Surface Municipal  250 21.05.13 
Bran Sands  Conventional  Jet Municipal/Industrial  391142 20.05.13 
Branxton  Oxidation Ditch Surface Municipal  250 21.05.13 
Broomhaugh Oxidation Ditch Surface Municipal  7095 11.04.13 
Browney Conventional  Jet Municipal  21586 24.05.13 
Cambois Conventional  Fine bubble Municipal  28655 13.05.13 
Cramlington Conventional  Surface Municipal/Industrial  45309 05.06.13 
Haggerston Oxidation Ditch Medium bubble Municipal  2040 21.05.13 
Hendon Conventional  Fine bubble Municipal  229108 09.04.13 
Hexham Conventional  Surface Municipal  29714 11.04.13 
Hordon Conventional  Fine bubble Municipal  100299 09.04.13 
Howdon Oxidation Ditch Fine bubble Municipal/Industrial  947811 13.04.13 
Marske  SBR Fine bubble Municipal  93556 09.04.13 
Newbiggin Conventional  Fine bubble Municipal  38487 13.05.13 
Seaham Conventional  Fine bubble Municipal  23595 15.05.13 
Seahouses SBR Jet Municipal  11213 02.05.13 
Seaton Carew Conventional  Fine bubble Municipal  120222 09.04.13 
Sedgeletch Conventional  Fine bubble Municipal  51152 04.04.13 
Tudhoe Mill Conventional  Fine bubble Municipal  22493 30.04.13 
Washington Oxidation Ditch Surface Municipal/Industrial  74916 09.05.13 

*Total equivalent population (TEP) served by the plant. SBR: Sequencing batch reactor. 

2.2.5. Comparison of FCM and TEM counts 

FCM AS viral counts obtained from 7 of the WWTP’s were compared with TEM counts. For TEM 

analyses the preconcentration procedure (i.e. ultracentrifugation) typically used was omitted, 

since the number of viruses in AS was expected to be very high (Otawa et al., 2007; Wu and Liu, 

2009). 1 mL of pre-treated sample was diluted with 1 mL of deionised water, mixed and then 2 µL 

was spotted onto a 200 mesh Formvar coated copper grid and air dried at room temperature. 

Unrinsed grids were negatively stained with 2% uranyl acetate for 1 minute. Excess stain was 

drained off with a pointed piece of glass fibre filter paper and grids were then left to dry at room 

temperature for 24 hours. Observations were made using a Philips CM 100 compustage 

transmission electron microscope, operating at 100 kV. Duplicate grids were prepared for each 
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sample, with 30 fields of view (FOV), determined as a sufficient sample size as described by 

Davenport and Curtis (2004), examined per grid at a magnification of 13,500.  

2.2.6. Statistical Analyses  

All statistical analysis was undertaken in RStudio (v. 1.0.143, R Core Team, 2017) using R version 

3.4.0 (R Core Team, 2017). The Shapiro-Wilk Test (p > 0.05, shapiro.test, “stats” v. 3.4.0, R Core 

Team, 2017) and the Bartlett Test (p > 0.05, bartlett.test, “stats” v. 3.4.0, R Core Team, 2017) were 

utilised to test normality and homogeneity of variance respectively, unless stated otherwise. 

2.2.6.1. Protocol Optimisation  

Virus abundance after each treatment was compared and analysed for significant differences 

using ANOVA with Tukey’s pairwise comparisons (TukeyHSD, “stats” v. 3.4.0, R Core Team, 2017). 

Prior to analysis data was checked for normality and homogeneity of variance as described in 

2.2.10.  

2.2.6.2. Agreement between FCM and TEM Enumeration 

Agreement between the two methods was assessed using linear regression and Bland Altman 

analysis using the functions .lm and bland.altman.stats in packages “stats” (“stats” v. 3.4.0, R Core 

Team, 2017) and “BlandAltmanLeh” (v. 0.3.1, Lehnert, 2015) respectively. Linear models were 

checked visually for homoscedasticity, linearity and residual autocorrelation, whilst model 

residuals were checked for normality as in 2.2.10 (Norman and Streiner, 2008; Zuur et al., 2010; 

Ghasemi and Zahediasl, 2012). For Bland Altman analysis calculated differences between FCM and 

TEM virus abundances were checked for normality as described in 2.2.10 so that 95% confidence 

intervals (CI’s) could be estimated.  

2.3. Results 

2.3.1. Optimisation of Protocol for AS Virus Enumeration by FCM  

AS samples incubated with dispersants displayed higher virus counts than untreated samples (Fig. 

2.1 A). The most effective treatment, based on the largest increase in virus abundance from its 

paired control, was Tween 80 (5%) and SP (10mM); 1.52 ± 0.19 × 109  VLP mL-1 treated and 1.15 ± 

0.12 × 109 VLP mL-1 control (ANOVA: P < 0.05).  

Sonication had no statistically significant effect in four pairwise comparisons (1, 2, 3 and 5 

minutes) with unsonicated samples (ANOVA: P > 0.05), whilst 8 minutes had a non-significant 

negative effect on virus counts (ANOVA: P > 0.05, Fig. 2.1 B).  
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Virus counts obtained from DNase treated samples gave contrasting results (Fig. 2.2 A). Samples 

treated with 1500U µL-1 gave significantly lower counts than those in untreated samples (1.31 ± 

0.14 × 109 and 1.95 ± 0.05 × 109 VLP mL-1 respectively, ANOVA: P < 0.05), a percentage decrease 

of 32.7%, whilst samples treated with 1.5U µL-1 showed no significant difference to those in 

untreated samples (1.92 ± 0.1 × 109 and 1.95 ± 0.05 × 109 VLP mL-1 respectively, ANOVA: P > 0.05, 

Fig. 2.2 A).  

 

Figure 2. 1. Effect of dispersants (A) and sonication time (B) on FCM virus abundance. Main bars indicate mean virus abundance across 
triplicates, whilst error bars indicate standard deviation across triplicates. * Significantly different from controls at the 0.05 level. 

 

Figure 2. 2. Effect of DNase treatment (A), stain type and dilution (B) and incubation temperature (C) on FCM virus abundance. Main 
bars indicate mean virus abundance across triplicates, whilst error bars indicate standard deviation across triplicates. * Significantly 
different from other treatments at the 0.05 level. 

The highest virus count was achieved using SG II at a dilution of 0.5 × 10-4 (2.3 ± 0.05 × 109 VLP mL-

1, Fig. 2.2 B), although counts were not significantly higher than those obtained using SG I, SG or 

SG I + II (ANOVA: P > 0.05). No large difference in GFL or SSC single was detected between the 

three stains, thus distinguishing between dsDNA, ssDNA or RNA viruses was not possible (Fig. 2.3). 

The original incubation temperature of 80oC gave the highest counts (1.97 ± 0.02 × 109 VLP mL-1), 
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they were not however significantly greater than those obtained at 75 and 85oC (1.82 ± 0.01 × 109 

and 1.87 ± 0.03 × 109 VLP mL-1 respectively, ANOVA: P > 0.05, Fig. 2.2 C). 

 

Figure 2. 3. FCM density plots (A – C) and histograms (D – F) of AS samples taken from Tudhoe Mill WWTP stained with SG I (A and D), 
SG (B and E) and SG II (C and F), all at a 0.5 × 10-4 dilution of commercial stock. All events plotted, sample dilution 1:1000, purple and 
yellow lines (D – F) are GFL (FL1-H) and SSC (SSC-H) signals respectively. Total virus gate (A – C) taken from Brussaard et al. (2010). 

2.3.2. Virus Recovery and Enumeration Efficiency 

The efficiency of virus detachment and staining for both protocols was tested by estimating the 

recovery of the T4 virus from seeded samples, as well as total virus recovery. The recovery 

efficiency of the seeded T4 coliphage varied between the two protocols, with the optimised 

protocol presented here (Fig. 2.4) recovering 102 ± 2.7% compared to that of Brussaard et al. 

(2010), which recovered 85.4 ± 2.1% (0.93 ± 0.02 × 109 mL-1 and 0.78 ± 0.02 × 109 mL-1 of the 

seeded 0.91 × 109 VLP mL-1  respectively). Total virus recovery also varied, the optimised protocol 

recovered 1.07 ± 0.03 × 109 VLP mL-1 compared with 0.87 ± 0.02 × 109 VLP mL-1 recovered by that 

of Brussaard et al. (2010), an increase of 22.9%. 

2.3.3. Virus Abundance in Full Scale Activated Sludge WWTP’s 

Virus abundance in 25 AS plants ranged from 0.59 ± 0.04 × 109 VLP mL-1 (Bowsden) to 5.14 ± 0.37 

× 109 VLP mL-1 (Howdon), with a mean concentration of 2.35 × 109 VLP mL-1 (Table 2.2). The 

concentration of viruses per gram (dry) of MLSS ranged from 2.64 ± 0.10 × 1011 (Brand Sands) to 

28.11 ± 3.15 × 1011 (Washington), with a mean concentration of 9.59 × 1011. 93.8% ± 2.4% of 
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viruses found across all plants were those associated with the V1 subpopulation, with the V2 and 

V3 subpopulations making up 6.3 ± 2.5% and 0.3 ± 0.1% respectively (Fig. 2.5). No clear 

relationship was apparent between MLSS and virus concentrations. 

 

Figure 2. 4. Diagram of the optimised protocol based on our findings, including processes, methodology and critical notes. 

Table 2. 2. Concentration of viruses from 25 activated sludge plants in the North East of England, UK. 

WWTP Virus concentrationa (109 mL-1)   MLSS (g L-1) Virus concentrationb (1011 g -1) 

Amble 3.25 ± 0.16 3.1 10.48 ± 0.51  
Aycliffe 1.81 ± 0.15 1.9 9.51 ± 0.79 
Berwick 1.21 ± 0.09 2.09 5.78 ± 0.43 
Billingham 1.89 ± 0.10 1.36 13.92 ± 0.73 
Blyth 3.40 ± 0.18 4.58 7.43 ± 0.39 
Bowsden 0.59 ± 0.04 2.13 2.76 ± 0.21 
Bran Sands  2.96 ± 0.11 11.21 2.64 ± 0.10 
Branxton  1.05 ± 0.07 2.02 5.21 ± 0.34 
Broomhaugh 1.35 ± 0.15 4.01 3.38 ± 0.39 
Browney 0.72 ± 0.08 1.87 3.83 ± 0.41 
Cambois 2.23 ± 0.07 2.88 7.75 ± 0.23 
Cramlington 3.54 ± 0.23 1.38 25.65 ± 1.66 
Haggerston 1.23 ± 0.05 2.86 4.30 ± 0.19 
Hendon 3.25 ± 0.13 3.08 10.55 ± 0.44 
Hexham 2.51 ± 0.13 2.77 9.05 ± 0.45 
Hordon 2.23 ± 0.21 2.16 10.33 ± 0.97 
Howdon 5.14 ± 0.37 2.19 23.46 ± 1.71 
Marske  3.60 ± 0.21 2.94 12.25 ± 0.71 
Newbiggin 2.88 ± 0.34 4.23 6.82 ± 0.79 
Seaham 2.41 ± 0.19 3.22 7.49 ± 0.59 
Seahouses 1.00 ± 0.04 1.54 6.54 ± 0.25 
Seaton Carew 2.65 ± 0.11 3.1 8.56 ± 0.35 
Sedgeletch 1.12 ± 0.06 3.04 3.68 ± 0.21 
Tudhoe Mill 2.70 ± 0.47 2.64 10.21 ± 1.79 
Washington 3.98 ± 0.45 1.415 28.11 ± 3.15 
a concentrations determined by FCM using the optimised protocol, ± denotes standard deviation between triplicate samples. b values 
calculated from virus concentration per millilitre and the MLSS data. 

Process

1. Fixation

2. Storage

3. FCM Start Up

4. Virus Extraction

5. Sample Preparation

6. Counting

7. Data Analysis

Method

Fix sample with 0.5% Glutaraldehyde for 15 -
30 mins in dark at 4oC.

Flash freeze with liquid nitrogen and store at -
80oC.

Clean FCM, check optimum settings and 
determine flow rate.

Add Tween 80 (5%) and Sodium 
Pyrophosphate (10 mM) to thawed sample, 

mix and incubate at room temperature for 15 
mins in the dark. 

Dilute sample, stain with SYBR Green II (0.5 ×
10-4 ) and incubate at 80oC for 10 mins.

Count sample dilutions for 1 min at a flow rate 
between 25 - 50 µL min-1.

Gate virus populations and subtract blank 
values.

Notes

Prevent prolonged fixation as reduced 
virus counts will result.

Once thawed do not refreeze.

Make sure background noise is low by 
running reagent blank.

Heat surfactant solution to ~60oC to 
decrease viscosity. 

Run a number of dilutions and allow 
sample to cool before analysis (5 

mins).

Event rate should be >200 but <1000 
per sec to avoid coincidence.

Gates should be consistent.
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2.3.4. FCM vs. TEM 

The best-fit linear regression model of FCM and TEM viral counts yielded a highly significant, 

positive correlation coefficient and high coefficient of determination (P < 0.05, R2 = 0.76, Fig. 2.6 

A). The 95% CI’s for the slope coefficient (β), which was also significant (P < 0.05), and the intercept 

() additionally include 1 and 0 respectively, implying virus abundances obtained by both methods 

were comparable. Nonetheless FCM estimates were 2.7 times higher, on average, than those 

given by TEM, with Bland Altman analysis identifying a bias estimate, mean difference between 

FCM and TEM viral counts, of 1.70 × 109 VLP mL-1 (Fig. 2.6 B). Differences between the two 

methods were however consistent across the measurement range (90% of the mean of FCM and 

TEM counts, Fig. 2.6 C), despite analysis of raw counts suggesting the contrary (Fig. 2.6 B). Thus 

FCM does appear a suitable method for viral enumeration in AS, particularly when one considers 

the average coefficient of variation between replicates was 6.67 for FCM and 17.25 for TEM. 

 

Figure 2. 5. Flow cytometry density plots of AS samples taken from Bowsden (A), Sea Houses (B) and Howdon (C) WWTP’s following 
pre-treatment and processing as described in the optimised protocol All events plotted, sample dilution 1:1000. V1, V2 and V3 gates 
taken from Brussaard et al. (2010). 

 

Figure 2. 6. Statistical comparisons of FCM and TEM viral counts. FCM Vs TEM viral counts (A), solid line represents the theoretical 
slope of a 1:1 relationship and the dashed line, and associated shaded area, represent the best fit regression line and 95% CI’s 
respectively (n = 7, Shapiro-Wilk Test P = 0.98, R2 = 0.76, α = 2.49 × 108 (CI = -1.50 – 2.00 × 109) and β = 2.52* (CI = -0.88 – 4.16)). Bland 
Altman plot of mean FCM and TEM viral counts plotted against their differences (B) and their differences as a percentage of the mean 
abundance (C), solid and dashed black lines represent the mean difference and associated 95% CI’s respectively (n = 7, Shapiro-Wilk 
Test P = 0.68 and 0.81 respectively). * Significant at the 0.05 level. 
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2.4. Discussion 

We present a rapid, accurate and sensitive flow cytometric method specifically optimised for 

enumerating total planktonic and floc-associated extracellular viruses in AS. This constitutes an 

improvement in the study of AS viral communities because FCM is faster and less dependent on 

the operator than EFM and TEM.  The performance of FCM virus quantification, is however 

strongly affected by AS sample pre-treatment, optimisation of the staining procedure and the 

presence of false positives, i.e. the staining of DNA associated with membrane-derived vesicles 

(MVs), gene transfer agents (GTAs) and eDNA (Forterre et al., 2013). 

The very different effects of sample pre-treatment emphasises the importance of selecting 

appropriate techniques to enable accurate virus quantification in AS samples. Dispersants have 

previously been used successfully as an eluent for dislodging viruses from sludge (Wu and Liu, 

2009) and marine (Danovaro et al., 2001; Danavaro and Middelboe, 2010) and freshwater 

(Duhamel and Jacquet, 2006) sediments.  This survey confirms these findings: the addition of SP 

(10mM) in combination with Tween 80 (5%) producing the highest and most accurate counts. 

Sonication has also been used to dislodge viruses from marine (Danovaro et al., 2001; Danavaro 

and Middelboe, 2010) and freshwater sediments (Duhamel and Jacquet, 2006), soils (Williamson 

et al., 2003) and anaerobic digester sludge (Wu and Liu, 2009), with optimum sonication times of 

30 seconds (Otawa et al., 2007) and 1 minute (Wu and Liu, 2009) reported for AS samples. No 

significant effect was observed in this study. Possible explanations could be the more powerful 

equipment (120W compared to 10W and 100W), smaller sample size (1 mL compared to 10 mL 

and 50 mL) or greater dislodgment efficiency of the chemical pre-treatment used in this study. 

Disruption of viral protein capsids or lipid envelopes is thought to occur with enhanced sonication 

times (Wu and Liu, 2009) and may have lowered counts in this study.  

FCM enumeration of free viruses requires working close to the limits of staining methodology and 

the detection limit of a flow cytometer, thus the intensity of the GFL and/or SSC signal is crucial 

for optimising such protocols. SG I is commonly used for counting pelagic marine viruses (Marie 

et al., 1999; Brussaard, 2004) by FCM, however in some instances SG and SG II have provided 

increased and more reproducible counts (Chen et al., 2001; Duhamel and Jacquet, 2006; Tomaru 

and Nagasaki, 2007). Our results suggest SG II at a dilution of 0.5 × 10-4 provides the most accurate 

enumeration of total free viruses in AS. SG II has a strong affinity to RNA and thus a greater ability, 

when compared to SG I and SG, to stain small genome sized RNA viruses, which could explain the 

small increase in counts recorded. However the total counts and GFL/SSC signals observed would 

imply that all three dyes have a very similar ability to stain dsDNA, ssDNA and RNA viruses 
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respectively, a finding also reported by Brussaard et al. (2000) and Brussaard (2004). Consequently 

distinguishing between these virus populations is not possible with the method presented, as it is 

apparent that the total count obtained encompasses all three.  

Another important factor when trying to increase GFL is the incubation temperature, as heat 

treatment affects the permeability of the viral capsid and denatures the nucleic acid, thereby 

improving staining efficiency (Brussaard, 2004). An incubation temperature of 80oC is most 

commonly used for FCM enumeration of pelagic marine viruses (Marie et al., 1999; Brussaard, 

2004), however incubation at room temperature and 75oC has been shown to provide increased 

and more reproducible counts in marine samples (Tomaru and Nagasaki, 2007) and freshwater 

sediments (Duhamel and Jacquet, 2006). Our results suggest an incubation temperature of 80oC 

provide the most accurate enumeration of AS viruses. 

The significant (P = < 0.05) linear relationship between FCM and TEM counts, with its non-

significant intercept, and the consistent bias estimate obtained by Bland Altman analysis  suggests 

that these two methods are evaluating the same virus particles.  However the FCM counts were 

typically 2.7 times higher than corresponding TEM values. A direct comparison of FCM and TEM 

has never previously been undertaken.  However direct comparisons of EFM and TEM for marine 

and freshwater environments suggest a similar discrepancy between the fluorescent and direct 

counts with Hennes and Suttle (1995), Weinbauer and Suttle (1997) and Noble and Fuhrman 

(1998) reporting differentials of 2.3, 1.5 and 1.3 respectively.  

Discrepancies could result from the presence of false positives, eDNA, GTAs and MVs, causing FCM 

to overestimate virus abundance, a growing concern in natural environments (Forterre et al., 

2013). Treatment with DNase has previously been used to eliminate or reduce such an outcome, 

although no significant difference in EFM virus counts was observed by Otawa et al. (2007) and 

Wu and Liu (2009) between treated and untreated AS samples. Our results gave contrasting 

results, with the more concentrated DNase samples showing a significant decline in virus counts 

and the less concentrated samples showing little affect. The sensitivity of viruses to DNase has 

been demonstrated previously (Jiang and Paul, 1995; Bettarel et al., 2000), it is probable that at 

the higher DNase concentrations true viruses were degraded and thus counts reduced. MVs 

produced by Proteobacteria, which dominate AS communities (Wagner et al., 2002), and some 

hyperthermophilic archaea, as well eDNA adsorbed to cell debris or mineral surfaces, are also 

known to produce false EFM and FCM positives even after DNase treatment (Nielsen et al., 2007; 

Soler et al., 2008; Zhao et al., 2010). As there are no good methods to rapidly discriminate 

between viruses, GTA’S, MV’S and eDNA and DNase is ineffective in their removal and can degrade 
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the viruses of interest, it is recommended that an FCM (or EFM) count be controlled for the 

presence or absence of such false positives by a TEM count in a selection of samples, as done in 

this study.  

Discrepancies might also be caused by particulate matter and detritus obscuring the virus particles 

during TEM counts (Hennes and Suttle, 1995; Betteral et al., 2000). It was difficult in this study to 

find areas of the TEM grids devoid of such particles, though sufficient clear FOV were found to 

make an accurate count. The underestimation of values and significant greater variability of the 

TEM method in comparison to FCM may also be explained by the high magnifications used and 

the potential loss of viruses during the staining procedure (Betteral et al., 2000). 

The abundance of viruses in AS, as determined from 25 WWTP’s, is of the order 108 – 109 mL-1, 

similar to results reported by Otawa et al. (2007) and Wu and Liu (2009) (2.35 × 109 mL-1 compared 

with 1.1 × 109 and 1.19 × 109 mL-1 respectively). The concentration of viruses per gram (dry) of 

MLSS was also within the same order of magnitude, 1011 – 1012 g-1, across all three studies. The 

majority of viruses found were those associated with the low and medium fluorescence intensity 

V1 and V2 virus subpopulations, thought to be bacteriophages of the smallest class (30 – 60 nm in 

size) (Marie et al., 1999; Brussaard et al.,  2010). Whilst V1 viruses are thought to be smaller in 

size than V2 viruses, true size estimates are not viable since the GFL and SSC signals are not related 

to genome size or virus size or shape (Marie et al., 1999; Brussaard, 2000). 

The concentration of viruses in AS is thus amongst the highest of all systems studied to date. In 

marine environments concentrations range from 104 and 108 mL-1 (Wommack and Colwell, 2000), 

in freshwater ecosystems the highest virus abundance to date is 9.6 × 109 mL-1 (Hennes and Suttle, 

1995) whilst in marine and freshwater sediments virus abundance ranges from 0.03 – 11.7 × 109 

g-1 (Danovaro et al., 2002). In such environments viruses are proposed to continuously regulate 

microbial activity and ecology, including carbon and nutrient fluxes, food web dynamics and 

microbial diversity and diversification (Weinbauer, 2004). Given the high concentrations found in 

this study and the apparent dominance of bacteriophages it is speculated that viruses are active 

and dynamic in AS processes and could, in theory, influence microbial activity and ecology, thus 

directly affecting system performance and functional stability. The availability of a rapid 

quantification method will facilitate in testing this hypothesis.   
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2.5. Conclusions 

 The results show that the optimised protocol presented is an accurate and highly 

reproducible method for enumerating total free viruses in AS and thus is ideal for routine 

investigation. 

 FCM counts were highly correlated with TEM based counts and results were comparable 

to previously published EFM counts. 

 The major advantage of FCM over TEM and EFM is its high throughput, removing a key 

obstacle to undertaking detailed spatial and temporal studies of virus dynamics in AS 

systems. Such studies are a fundamental prerequisite to understanding their possible 

impact on a systems bacterial population and thus performance and functional stability.  
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CHAPTER 3 
COUPLED VIRUS-BACTERIA INTERACTIONS AND ECOSYSTEM FUNCTION IN 

AN ENGINEERED MICROBIAL SYSTEM 
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Viruses in natural environments are thought to control bacterial abundance, affect community 

composition and influence ecosystem function. Yet their dynamics have seldom been measured 

or modelled in engineered systems, where loss of function (plant failures) is common and 

unpredictable, or in any system for substantial periods at functionally relevant time scales. Thus 

virus abundance, in conjunction with total and ammonia oxidising bacterial abundances, bacterial 

community profiles, and a suite of environmental and operational parameters, was monitored 

weekly for two years in a full-scale activated sludge plant. Mixed liquor virus abundance fluctuated 

over an order of magnitude (3.18 × 108 – 3.41 × 109 virus’s mL-1) and was shown statistically to 

interact with both total and ammonia oxidising bacterial abundance, influence or be influenced 

by community composition, and negatively affect ecosystem function (effluent concentrations of 

COD and NH4
+- N). This suggests viruses play a more central role in the dynamics of activated 

sludge systems than hitherto realised and might be considered one of the key factors regulating 

bacterial abundance, community structure and functional stability. The quantitative association 

of viruses with physically credible abiotic factors gives credence to these findings but also 

emphasises the role that exogenous factors play in virus dynamics. 

3.1. Introduction 

Viruses are agents of mortality (Wommack and Colwell, 2000), nutrient regeneration (Middelboe 

and Jørgensen, 2006; Haaber and Middleboe, 2009; Shelford et al., 2012) and horizontal gene 

transfer (Lindell et al., 2004; Sullivan et al., 2006) and therefore key drivers of bacterial abundance, 

activity and community composition in natural environments, as well ecosystem function 

(Rodriguez-Valera et al., 2009; Winter et al., 2010; Breitbart, 2012; Liu et al., 2015). Yet their 

dynamics have seldom been monitored in activated sludge; an engineered microbial ecosystem 

utilised globally to degrade oxygen-depleting organics, transform toxic substances and remove 

nutrients from wastewaters, where loss of function is observed frequently, unpredictably and 

often inexplicably (Curtis and Sloan, 2006). 

Recent advances in molecular methods and the adoption of ecological approaches to engineered 

systems have shed some light on the complex mechanisms driving the microbial communities in, 

and the performance and functional stability of, activated sludge systems. Deterministic (e.g. 

reactor design, process configuration, operational and environmental conditions) and stochastic 

processes (e.g. microbial birth, death, immigration and speciation), alone and in combination, are 

two such classes of mechanism (van der Gast et al., 2008; Wells et al., 2009, 2011; Ayarza et al., 

2010; Ofiteru et al., 2010; Ayarza and Erijman, 2011; Valentin-Vargas et al., 2012). Both, however 
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only partially explain the variation seen in the microbial composition and performance of such 

systems (Ofiteru et al., 2010). 

Given its role in natural environments viral infection could be another important mechanism, 

especially considering its implication in host abundance fluctuations and functional instability (Lee 

et al., 2007; Barr et al., 2010; Motlagh et al., 2015), evidence of predator-prey type oscillations 

(Lee et al., 2007; Shapiro et al., 2010) and the sheer abundance of viruses (Otawa et al., 2007; Wu 

and Liu, 2009; Brown et al., 2015 (Chapter 2)) within activated sludge systems. To date however, 

viral dynamics have been largely overlooked. 

The absence of available methods to link viruses to their host’s (Brum et al., 2015; Dang and 

Sullivan, 2014; Brum and Sullivan, 2015) is undoubtedly a contributing factor. However, even total 

abundance methods, which sparked a transformation in virus ecology in the 1980s (Bergh et al., 

1989) and 1990’s (Hara et al., 1991; Marie et al., 1999), have only found limited application in 

activated sludge systems: being used to compare different activated sludge plants (Wu and Liu, 

2009; Brown et al., 2015 (Chapter 2)), or across very modest time scales (Otawa et al., 2007). This 

is in contrast to the numerous studies that have yielded great insights into and underpin our 

understanding of virus ecology in marine (e.g. Jiang and Paul, 1994; Weinbauer et al., 1995; 

Bratbak et al., 1996; Li and Dickie, 2001) and freshwater (e.g. Hennes and Simon, 1995; Hofer and 

Sommaruga, 2001; Bettarel et al., 2004; Jacquet et al., 2005) environments. Although even here 

the spatial and temporal scale of such studies are typically modest; a consequence of limited “ship 

time” and other logistical constraints. Thus multiyear studies at functionally relevant   temporal 

scales, and which incorporate time varying exogenous factors, have recently been called for in 

viral ecology (Breitbart, 2012; Brum and Sullivan, 2015; Wigington et al., 2016).  

To this end we utilised a recently adapted flow cytometric method (Brown et al., 2015 (Chapter 

2)) to measure virus abundance weekly for two years in a full scale nitrifying activated sludge plant. 

Such sampling frequency and longevity was considered foremost logistically feasible, but also 

biologically and functionally relevant considering nitrifying activated sludge systems maintain 

solid retention times (SRT) > 7 days (the average period of time biomass remains within a system, 

Tchobanoglous et al., 2003).   By doing so the relationship between virus abundance and the 

dynamics of total and ammonia oxidising bacteria (AOB), as well as community structure, was 

evaluated, whilst the influence of exogenous factors (environmental and operational parameters) 

was also determined. Thus factors affecting virus proliferation and their potential role in the 

microbial ecology, and potentially the performance (removal of COD and NH4
+- N) and functional 

stability, of activated sludge systems were elucidated. 
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3.2. Materials and Methods 

3.2.1. Sample Collection 

Mixed liquor (ML) grab samples were collected from the aeration basin (3600 m3) of a 

conventional nitrifying domestic wastewater treatment plant (WWTP, 6751 m3 day-1), situated in 

the North East of England, United Kingdom, on a weekly basis for a period of two years from June 

2011 to May 2013 (104 weeks). Samples were collected in 50 mL polypropylene containers and 

transported to the lab on ice for immediate processing. Concurrent primary settled sewage 

(influent) and effluent samples were also collected, in addition to a number of operational 

variables.  

3.2.2. Analytical Methods 

For all samples (influent, ML and effluent) suspended/volatile suspended solids (SS/VSS), soluble 

chemical oxygen demand (CODs) and soluble ammonium (NH4
+-N) were determined according to 

Standard Methods (APHA, 1998) and using Merck COD and NH4
+-N test kits (VWR, UK) respectively. 

Anion concentrations, including nitrate, nitrite, sulphate and phosphate, were determined using 

high performance Ion Chromatography (Dionex ICS-1000 with AS40 auto sampler); samples were 

filtered through a 0.2μm polyethersulfone membrane prior to analysis. Influent trace metals, 

including cadmium, zinc, lead and copper, were measured by inductively coupled plasma optical 

emission spectroscopy (ICP-OES) (Vista MPX axial ICP-OES, Varian, UK), as described by Martin et 

al. (1994). Samples were acidified on collection to pH < 2, digested and then filtered through a 

0.45μm polyethersulfone membrane prior to analysis. Finally temperature, dissolved oxygen (DO) 

and pH within the aeration basin were measured in real time using in situ probes, influent flow 

rate was determined using a Parshall flume, and sludge age was obtained from plant operators. 

3.2.3. Molecular Methods 

3.2.3.1. Flow Cytometry 

For virus enumeration 1 mL sub-samples of influent, ML and effluent were taken, transferred into 

2 mL cryovials and fixed at a final concentration of 0.5% glutaraldehyde for 15-30 minutes at 4oC 

in the dark. Samples were then flash frozen in liquid nitrogen and stored at -80 oC. After defrosting, 

samples were pre-treated and analysed in triplicate as described by Brown et al. (2015 (Chapter 

2)) using a FACScan flow cytometer (Becton Dickinson, USA) equipped with a 15-mW 488-nm air-

cooled argon-ion laser and a standard filter setup. 
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3.2.3.2. DNA Extraction 

DNA was extracted from 250 µL of ML and from 15 mL of influent, the latter being centrifuged at 

3392 × g for 15 minutes and the supernatant removed down to a working volume of 250 µL. Cell 

wall disruption was then carried out using the FastDNA SPIN Kit for soil (MP Biomedicals, USA), 

thus 244.5 µL of sodium phosphate buffer and 30.5 µL of MT buffer was added to samples and the 

mixture transferred to Lysing Matrix E tubes. Samples were then lysed at 6.5 ms-1 for 30 seconds 

in a FastPrep instrument (MP Biomedicals, USA) and centrifuged at 14000 × g for 15 minutes. DNA 

from 250 µL of the supernatant was then purified using a MagNA Pure LC 2.0 (Roche, UK) and the 

MagNA Pure LC DNA Isolation Kit III.  

3.2.3.3. Illumina Sequencing 

Sample preparation for Illumina sequencing generally followed the protocol of Caporaso et al. 

(2012). Thus the V4 region of the bacterial 16S rRNA gene was amplified using primers 515F 

(aatgatacggcgaccaccgagatctacactatggtattgtGTGCCAGCMGCCGCGGTAA; adapter, primer pad and 

primer linker in small letters; and specific primer sequence in capital letters) and 806R 

(caagcagaagacggcatacgagatbarcodeagtcagtcagccGGACTACHVGGGTWTCTAAT), the latter was 

barcoded with a 12-base error-correcting Golay code to facilitate sample multiplexing. Each 

sample was amplified in duplicate, pooled and then cleaned using a MinElute 96 UF Purification 

Kit as per the manufacturer’s instructions (Qiagen Ltd., West Sussex, UK). PCR reactions consisted 

of: 2 µl DNA extract, 20 µl 5 Prime Hot Master Mix (VWR, Lutterworth, UK), 1 µl each of forward 

and reverse primer (10 µM final concentration), and 26 µl molecular-grade water. Reactions were 

denatured at 94 °C for 3 minutes, with amplification proceeding for 35 cycles at 94 °C for 45 

seconds (further denaturing), 50 °C for 60 seconds (annealing) and 72 °C for 90 seconds 

(extension); a final extension at 72 °C for 10 minutes was added to ensure complete amplification. 

The concentration and purity of pooled amplicons was assessed using a Quant-iT PicoGreen 

dsDNA assay kit (Life Technologies, Paisley, UK). A composite sample for sequencing was created 

by combining all samples in equimolar amounts. The composite sample was cleaned twice using 

Agencourt AMPure XP beads (Beckman Coulter, High Wycombe, UK) according to the 

manufacturer’s instructions, with fragment selection undertaken using E-Gel 2% agarose gels (Life 

Technologies, Paisley, UK). The size-selected fragment was then purified using the QIAquick PCR 

purification kit (Qiagen Ltd., West Sussex, UK) and quantified using the Quant-iT PicoGreen dsDNA 

assay kit, to ensure the sample contained enough DNA for sequencing analysis. Sequencing was 

carried out on the Illumina MiSeq personal sequencer at the Centre for Genomic Research, 

University of Liverpool. A total of 9.5 million reads were obtained.  
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Raw reads were processed using the DADA2 (v. 1.4, Callahan et al., 2016) pipeline, specifically 

following the workflow for Big Data (https://benjjneb.github.io/dada2/bigdata.html), and using R 

version 3.4.0 (R Core Team, 2017). Forward and reverse read pairs were trimmed and filtered 

(minimum length 200 nucleotides, EEmax < 2 expected errors). Amplicon sequence variants (ASV’s) 

were independently inferred in each sample from forward and reverse reads using the run-specific 

error rates, and then joined using the ~mergePairs~ function. Chimeric ASVs were inferred and 

identified using ~removeBimeraDenovo~ and removed. This resulted in 2756 final ASVs (per 

sample average = 20750, min = 8708 and max = 63995) which were taxonomically classified against 

the SILVA database (v.128, Quast et al., 2013) using the DADA2 implementation of the RDP's naive 

Bayesian classifier (Wang et al., 2007). 

3.2.3.4.  qPCR 

Quantification of total bacteria and AOB was carried out using qPCR and amplification of the 16S 

rRNA gene and the ammonia monooxygenase (amoA) gene respectively. Samples were amplified 

in triplicate on a CFX96 Real-Time PCR Detection System (Bio-Rad, UK) using the primer sets 338F 

(Muyzer et al., 1993) and 1046R (Huber et al., 2007) for total bacteria and amoA-1F* (Stephen et 

al., 1999) and amoA-2R (Rotthauwe et al., 1997) for AOB. qPCR reactions contained 3 L of 

template DNA (sample DNA, standard DNA or molecular grade water (negative control)), 0.5 L of 

forward and reverse primer (10 moles per L), 5 l of SsoFast EvaGreen supermix (Bio-Rad, UK) 

and 1 l of molecular-grade water. Reaction conditions were: 1 cycle at 98 oC for 3 minutes, 

followed by 40 cycles consisting of 98 oC for 5 seconds and 60 oC (338F/1046R) or 56 oC (amoA-

1F/amoA-2R) for 5 seconds. Purified circular plasmids containing the target gene were used as 

standards and run in triplicate for each qPCR reaction.  Efficiencies for all qPCR reactions ranged 

between 90-110% and had a R2 ≥ 0.99. Gene copy numbers per unit volume were converted to 

cell numbers per unit volume using accompanying sequence data for the 16S rRNA gene 

(described in Appendix III) and assuming each AOB cell contained 2 copies of the amoA gene 

(McTavish et al., 1993; Norton et al., 2002).  

3.2.4. Statistical Analysis 

All statistical analysis, unless otherwise stated, was undertaken in RStudio (v. 1.0.143, R Core Team, 

2017) using R version 3.4.0 (R Core Team, 2017).  
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3.2.4.1. Virus – Biotic/Abiotic Interactions 

Virus – biotic/abiotic interactions were assessed by multivariate generalised least squares (GLS) 

regression (gls, “nlme” v. 3.1-131, Bates et al., 2017), with models describing ML virus, total 

bacteria and AOB abundance produced. All measured biotic and abiotic parameters, unless 

otherwise stated (see footnotes of Table III.2 – III.4), were initially used as covariates (Ki = ~59, n 

= 102), with multivariate ordinary least squares (OLS) regression (lm, “stats” v. 3.4.0, R Core Team, 

2017) followed by bidirectional elimination (stepAIC, “MASS” v. 7.3-47, Venables and Ripley, 2002) 

based on Bayesian information criterion (BIC) used for model simplification and selection. OLS 

models were then rerun as GLS to allow incorporation of a correlation structure (corCAR1(form = 

~ Week), accounting for slight variations in sampling frequency (approximately weekly) and 

temporal dependence (Zuur et al., 2010). To guarantee parsimony and adherence to the 

assumptions of linear regression manual backward elimination and forward selection based on 

BIC was subsequently undertaken on all GLS models, which were fit by maximum likelihood. 

Models were checked visually for linearity (Fig. III.4 – III.6, A and B), homoscedasticity (Fig. III.4. – 

III.6, B and C), residual autocorrelation (acf and pacf, “stats” v. v. 3.4.0, R Core Team, 2017, Fig. 

III.4. – III.6, E and F), and normality (qqPlot, “car” v. 2.1-4, Fox et al., 2016, Fig. III.4 – III.6, D), with 

the Anderson-Darling Test (P > 0.05, ad.test, “nortest” v. 1.0-4, Gross and Ligges, 2015) 

additionally used to confirm the latter. Collinearity amongst explanatory variables was assessed 

by variance inflation factor’s (VIF’s, vif, “car” v. 2.1-4, Fox et al., 2016), with variables contributing 

to VIF’s > 3 removed based on statistical significance (P-value) until all fell below this threshold 

(Zuur et al., 2010). To aid in adherence to these assumptions variables were either transformed 

(log10 for virus, total bacteria and AOB abundances (biotic) and natural log for COD, NH4
+- N, nitrate, 

nitrite and phosphate terms (abiotic)) or standardised to mean 0 variance 1 (all other 

environmental and operational parameters (abiotic)). Finally ANOVA (anova, “stats” v. v. 3.4.0, R 

Core Team, 2017) was used to test the statistical significance of each model’s correlation structure, 

whilst a pseudo-R2 was calculated to ascertain a representation of the variance in ML abundances 

explained by each of the models respectively (r.squaredLR, “MuMin” v. 1.15.6, Bartoń, 2016). 

3.2.4.2. Virus – Community Structure Interactions 

Canonical correspondence analysis (CCA) was performed to assess the response of the bacterial 

communities to  abiotic/biotic conditions (cca, “vegan” v. 2.4-3, Oksanen et al., 2017), with all 

measured biotic and abiotic parameters, transformed as in 2.4.1, initially used as explanatory 

variables (Ki = ~59, n = 102) unless otherwise stated (see caption of Fig. 3.3). Automated 
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bidirectional selection, based on Akaike information criterion (AIC) and Monte Carlo permutation 

tests (999 permutations), was then used for model simplification and thus identification of the 

most significant explanatory variables (step, test=“perm”, “stats” v. v. 3.4.0, R Core Team, 2017). 

Collinearity was assessed by VIF’s (vif.cca, “vegan” v. 2.4-3, Oksanen et al., 2017), with variables 

contributing to VIF’s > 3 being removed as in 2.4.1 (Zuur et al., 2010). Finally the statistical 

significance of the CCA model (constrained components), its axes and the marginal effects of each 

explanatory variable were assessed using permutation tests (999 permutations, anova.cca, “vegan” 

v. 2.4-3, Oksanen et al., 2017). Note CCA was chosen over redundancy analysis as unimodal 

approaches are better suited to relative abundances and the presence of zeros (Ramette, 2007). 

Local similarity analysis (LSA, Ruan et al., 2006) was utilised to observe correlations between the 

50 most abundant OTU’s (relative abundances) and ML virus abundance. Its use over more 

traditional approaches (e.g. Pearson and Spearman’s rank correlation) was justified given it 

assesses local (short periods of time) and time-delayed associations, as well as those non-lagged 

and occurring across the whole sampling period (Xia et al., 2011; 2013). Analysis was undertaken 

using eLSA v 1.0.2 (Xia et al., 2011; 2013) in Python v 2.7. A maximum time delay of three was 

utilised (delayLimit = 3), P-values were calculated by permutation tests (1000, P-valueMethod = 

perm), the required precision of P-values was set at 1/1000 (precision = 1000) and data was rank-

normalised and z-transformed (normMethod = robustZ, Ruan et al., 2006; Xia et al., 2011; 2013). 

Multiple hypothesis correction was undertaken using Q-values (Storey, 2002). The LSA output was 

then visualised as an association network in Cytoscape v 3.6.0 (Shannon et al., 2003), only 

correlations with a P-value ≤ 0.05, a LSA score (LS) ≥ 0.3 and a Q-value ≤ 0.01 were examined. 

Calculation of the peak (max relative abundance) to average (mean relative abundance) ratio 

(PAR) for examined OTU’s allowed assessment of their persistence within the ML, three arbitrarily 

defined ecological categories facilitated this process; persistent (PAR ≤ 5), intermittent (PAR > 5 < 

10) and transient (PAR ≥ 10). 

The influence of virus abundance on alpha diversity was assessed by calculation of Spearman’s 

rank correlation coefficients (cor.test, “stats” v. 3.4.0, R Core Team, 2017) between ML and 

effluent virus abundance and D1 (exponential of Shannon diversity) and D2 (inverse of Simpson 

diversity) Hills diversities (diversity, “vegan” v. 2.4-3, Oksanen et al., 2017), which better represent 

rare and common taxa respectively (Vuono et al., 2015). Its use, over Pearson correlation, was 

justified since all variable combinations, transformed as in 3.2.4.1, were not bivariate normal 

(roystonTest, “MVN” v. 4.0.2, Korkmaz et al., 2014). Bonferroni corrections were applied to all 

calculated correlations.  
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3.2.4.3. Virus – Community Function Interactions 

Virus-community function interactions were assessed by calculation of Spearman’s rank 

correlation coefficients between ML and effluent virus abundance and ML and effluent COD and 

NH4
+-N concentrations respectively, performed, justified and corrected as in 3.2.4.1. Structured 

equation modelling (SEM), which is well suited to studying hypotheses about multiple processes 

operating in a system (Grace et al., 2010),  was also conducted to infer hypothesised causal links 

between virus abundance and effluent COD and NH4
+-N concentrations (sem, “lavaan” v. 0.5-

23.1097, Rosseel, 2012). A priori models were constructed based on literature and theory, 

improved upon using statistical associations identified by regression analysis (section 3.2.4.1) and, 

to guarantee parsimony, simplified by removing nonsignificant indicators and pathways (P < 0.1). 

Model fits were assessed using the χ2 test (P > 0.05), the root square mean error of approximation 

(RMSEA, < 0.06), the root mean square residual (RMR, < 0.08), the comparative fit index (CFI, > 

0.95) and AIC respectively (Hu and Bentler, 1999; Grace et al., 2010), with R2 values obtained for 

each dependent matrix (Grace et al., 2010).  

Prior to SEM analysis all bivariate relationships were checked for nonlinearity (cor.test, “stats” v. 

3.4.0, R Core Team, 2017) and, through evaluation of skewness and kurtosis values, multivariate 

normality (mardiaTest, “MVN” v. 4.0.2, Korkmaz et al., 2014). To aid in adherence to these 

assumptions variables were transformed (log10 and natural log for biotic and abiotic respectively) 

and subsequently standardised to mean 0 variance 1, whilst SEM models, to counter minor 

normality departures, were estimated using a robust maximum likelihood approach (estimator = 

“MLM”, “lavaan” v. 0.5-23.1097, Rosseel, 2012) and Satorra-Bentler scaled fit statistics (Curran et 

al., 1996).  

3.3. Results 

3.3.1. Bioreactor Performance and Abiotic Conditions 

Influent flow rates were highly variable over the two-year study period (Table III.1 and Fig. III.1), 

leading to fluctuating hydraulic and solids retention times (10.6 ± 3.1 hours and 11.1 ± 3.1 days 

respectively, Fig. III.1) and reactor biomass concentrations (2.7 ± 0.5 g L-1 MLSS and 2.01 ± 0.4 g L-

1 MLVSS, Fig. III.2). Reactor temperature varied on a seasonal basis, with a summer maximum and 

winter minimum of 17.9 oC (August 2012) and 6.3 oC (January 2013) recorded respectively (Fig. 

III.1). DO concentrations were moderately variable (2.5 ± 0.8 mg L-1) and pH was maintained within 

a narrow range (6.6 ± 0.2) through flow dependent dosing of sodium hydroxide (Fig. III.1).  
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The discharge consent, a legislated maximum final effluent concentration, of CODs (125 mg L-1) 

was achieved 96.1% of the time, thus mean removal efficiency (82.1 ± 18.1 %) and effluent 

concentrations (32 ± 28.5 mg L-1) were relatively stable (Fig. III.2 B). Nitrification was less efficient 

and more unstable (mean NH4
+-N removal of 75.8 ± 27.6 %); accordingly effluent NH4

+-N and 

nitrite concentrations were highly variable (0 - 76.4 and 0 - 5.3 mg L-1) and the discharge consent 

limit (5 mg L-1 ammonia) was adhered to only 57.8% of the time (Fig. III.2). Certainly nitrite 

accumulation, thus incomplete nitrification, was periodically evident, particularly from day 500 

onwards (Fig. III.2 E). Of the trace metals monitored in the influent calcium, potassium and 

magnesium were present at the highest concentrations (mean values of 47.4 ± 8.7, 13.1 ± 3.1 and 

11 ± 2.8 mg L-1 respectively), whilst cadmium and arsenic were present at the lowest 

concentrations (mean values of 3.9 ± 11.3 and 9.3 ± 7.9 µg L-1 respectively, Fig. III.3). All monitored 

trace metals, however, were routinely present in the influent (Table III.1 and Fig. III.3).  

 

Figure 3. 1. The abundance of viruses (A), total bacteria (B) and AOB (C) in the influent, ML and effluent (viruses only) of full scale 
WWTP. 

3.3.2. Temporal Abundance Dynamics of Viruses and Bacteria  

ML virus abundance varied by roughly an order of magnitude (3.18 × 108 - 3.41 × 109 viruses mL-1) 

throughout the two years, with temporal fluctuations evident (Fig. 3.1 A). Virus abundance was 

greater than bacterial abundance; averaging 1.31 ± 0.57 × 109 viruses mL-1 compared with 4.30 ± 

3.48 × 108 bacteria mL-1 and 1.36 ± 1.13 × 107 AOB mL-1. The abundance of total bacteria and AOB 
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also varied across orders of magnitude (4.29 × 107 – 2.20 × 109 bacteria mL-1 and 1.69 × 106 - 6.04 

× 107 AOB mL-1), with fluctuations generally, but not exclusively, occurring concurrently (Fig. 3.1 B 

and C). The mean ML virus to total bacteria ratio (VBR) was 6.15, although this varied greatly (0.52 

– 76.86). 

The abundance of all three communities within the influent was orders of magnitude lower (Fig. 

3.1), with mean abundances of 1.52 ± 0.83 × 108 viruses mL-1, 2.35 ± 4.24 × 107 bacteria mL-1 and 

1.14 ± 2.98 × 105 AOB mL-1 recorded respectively. Synchronous, order of magnitude abundance 

fluctuations, analogous to those in the ML, were again evident (1.79 × 106 - 4.38 × 108 viruses mL-

1, 2.81 × 105 – 23.62 × 108 bacteria mL-1 and 2.1 × 103 - 2.8 × 106 AOB mL-1, Fig. 3.1). Effluent virus 

abundance (6.1 ± 2.39 × 108 viruses mL-1) was also highly variable (1.1 × 108 - 1.27 × 109 viruses 

mL-1, Fig. 3.1 A) and often mimicked abundance fluctuations in the ML. Indeed ML and effluent 

virus abundance were positively correlated (P < 0.001, Fig. 3.1), suggesting ML viruses are lost in 

effluent wastewater. 

 

Figure 3. 2. Log10 ML virus (A), bacteria (B) and AOB (C) abundance from the full scale WWTP (observed) and respective multivariate 
GLS regression models (fitted). Shaded area represents 95% confidence intervals for the regression models. n = 102 (A and B) and 95 
(C) respectively, the latter due to missingness in influent AOB abundance. 



47 
 

3.3.3. Virus Interactions with Biotic and Abiotic Conditions  

Fitted values from the ML virus GLS regression model agreed well with observed abundances (Fig. 

3.2 A and Fig. III.4 A), with explanatory variables explaining 83% of abundance variations. The 

model identified strong positive associations with influent virus abundance (P < 0. 05), influent 

NH4
+- N (P < 0.01), phosphate (P < 0.01) and sulphur (P < 0.001) concentrations, ML AOB 

abundance (P < 0.05) and ML pH (P < 0.05). In contrast influent magnesium concentrations (P < 

0.001) and ML nitrate (P < 0.001), nitrite (P < 0.01) and sulphate (P < 0.001) concentrations were 

highly negatively associated (Table III.2).  

Conversely the fitted values from the ML total bacteria and AOB GLS regression models showed 

some disparity from observed abundances (Fig. 3.2, III.5 A and III.6 A), with explanatory variables 

explaining 53% and 47% of variations in abundances respectively. Both models did however 

identify strong positive associations with ML and, for the latter, effluent virus abundance (P < 0.01, 

P < 0.001 and P < 0.01 respectively, Table III.3 and III.4). Other explanatory variables significantly 

contributing to each model are summarised in Appendix III (section III.2.2.1 and III.2.2.2 

respectively). 

 

Figure 3. 3. CCA ordination of temporal ML bacterial community dynamics from the full scale WWTP and associated virus and abiotic 
variables, axes 1 and 2 (A) and 3 and 4 (B) respectively. Points and associated numbers represent individual samples, coloured and 
sized based on the month and year of collection and the samples virus concentration mL-1 respectively. Proximity of samples indicates 
similarities in community composition. Arrows indicate the direction of increase in each explanatory variable, their length indicates 
the strength of correlation with each axis and the angle between arrows indicates the approximate degree to which explanatory 
variables are correlated. Inf = influent, Eff = effluent. 
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3.3.4. Virus Interactions with Bacteria Community Structure 

The CCA ordination explained the majority of observed variance in taxa-environment associations 

(77.6%, Table III.5), however it only encompassed a minority of the variance in the taxa data 

(21.1%, Table III.5). All four axes displayed high taxa-environment correlations (Table III.5), 

indicating strong associations between taxa, viruses and abiotic conditions (Fig. 3.3).  

ML temperature was the most significant variable to the ordination (P < 0.001), followed by 

influent potassium (P < 0.001) and ML virus abundance (P < 0.001) respectively (Fig. 3.3 and Table 

III.5).  ML Nitrite (P < 0.001) and influent phosphate (P < 0.001) and sulphur (P < 0.001) were also 

seemingly important, as were HRT (P < 0.01), ML NH4
+- N (P < 0.01) and effluent nitrite (P < 0.01) 

but to a lesser degree (Fig. 3.3 and Table III.5). Although not included in the final CCA ordination 

influent virus abundance was found to significantly influence the ordination if manually added (P 

< 0.1), although weakly.  

 

Figure 3. 4. Network visualisation of LSA associations between all OTU’s from the top 50 most abundant that were associated with ML 
virus abundance (LS ≥ 0.3, P ≤ 0.05 and Q ≤ 0.01) at the full scale WWTP. Circular nodes indicate bacterial taxa, coloured and sized 
based on the OTU’s PAR (≤ 5 = white, > 5 < 10 = light blue and ≥ 10 = dark blue) and mean relative abundance respectively. For reference 
OTU 2 and OTU 50 had mean relative abundances of 4.68%, the highest, and 0.36%, the lowest. The diamond shaped node indicates 
ML virus abundance. Solid and dashed lines indicate positive and negative associations respectively, whilst a lines colour indicates the 
correlations delay (teal = 0, purple = 1, yellow = 2 and green = 3). Arrows point to the delayed, or trailing, node in delayed associations. 
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ML virus abundance was found to be significantly associated (LS > 0.3, P ≤ 0.05 and Q ≤ 0.01) with 

17 of the top 50 OTU’s, of which 6 were in the top 10 (Fig. 3.4). Of these associations 5 had no 

time lag, 2 negative (OTU’s 8 and 24) and 3 positive (OTU’s 5, 9 and 26). Indeed this group of OTU’s 

were highly interconnected at time T, OTU’s 5, 9 and 26 being positively associated and OTU pairs 

8 and 5, 8 and 9, 8 and 26 and 24 and 9 being negatively associated respectively (Fig. 3.4). All 5 

were also highly persistent in the ML (PAR ≤ 5, Fig. 3.4). Of the remaining 12 identified associations 

4 had a time delay of 1 (Fig. 3.4), 1 positive (OTU 11) and 3 negative (OTU’s 33, 37 and 44), 5 had 

a time delay of 2, 2 positive (OTU’s 2 and 50) and 3 negative (OTU’s 5, 34 and 46 and 50), and 3 

had a time delay of 3, 1 positive (OTU 19) and 2 negative (OTU’s 4 and 22). 5 of these OTU’s, 4 of 

which were present intermittently (PAR > 5 < 10) or transiently (PAR ≥ 10) within the ML (Fig. 3.4), 

were identified as bulking, filamentous genera, including Microthrix (OTU’s 2, 11 and 37), Thiothrix 

(OTU 50) and Tetrasphaera (OTU 4). Other noteworthy genera associated with ML virus 

abundance included Zoogloea, Acidovorax, Defluviimonas and Dechloromonas, OTU’s 5, 19, 24 

and 26 respectively.  

ML virus abundance was not statistically associated with either Hill’s diversity indices (Fig. 3.5 A), 

although effluent virus abundance was weakly negatively correlated with D1 (rare taxa, P < 0.05, 

Fig. 3.5 A) if Bonferroni corrections are disregarded. 

3.3.5. Virus interactions with community function  

ML and effluent virus abundance were highly positively correlated with both ML COD (P < 0.001 

and P < 0.01) and NH4
+- N (P < 0.001 and P < 0.05) concentrations, and weakly positively correlated 

with effluent NH4
+- N concentrations (P < 0.1 and P < 0.1, Fig. 3.5 B).  

 

Figure 3. 5. Spearman’s rank correlation coefficients describing virus – community structure (A) and virus – community function (B) 
interactions.  Black and white * values are standard and Bonferroni corrected respectively. Royston's Multivariate Normality Test: P > 
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0.05 for all correlations and n = 102 (A and B). D1 = exponential of Shannon diversity and D2 inverse of Simpson diversity. ° P < 0.1, * P 
< 0.05, ** P < 0.01, *** P < 0.001.  

The SEM analysis also identified significant positive associations, although non-directional, 

between ML virus abundance and both ML NH4
+- N (P < 0.05, Fig 3.6 A) and COD (P < 0.01, Fig 3.6 

B) concentrations, which were directly influencing, and being influenced by, corresponding 

effluent (P < 0.001 and P < 0.01, Fig 3.6) and influent concentrations (P < 0.001 and P < 0.05, Fig 

3.6) respectively. Effluent virus abundance was also none directionally positively associated with 

effluent NH4
+- N (P < 0.05, Fig 3.6 A) and COD (P < 0.01, Fig 3.6 B) concentrations, whilst being 

directly positively influenced by ML virus abundance (P < 0.001 and P < 0.001, Fig 3.6). ML virus 

abundance (P < 0.001, Fig 3.6 A), as well as ML AOB abundance (P < 0.1, Fig 3.6 A), was also directly 

positively influenced by influent concentrations of NH4
+- N. No significant associations were found 

between ML AOB/bacteria abundance and ML and effluent NH4
+- N/COD concentrations and virus 

abundance (Fig 3.6), the only exception being the negative association found between ML AOB 

and effluent virus abundance (P < 0.01, Fig 3.6 A). Overall the SEM analysis was able to explain 

28% and 12% of effluent NH4
+- N and COD concentrations respectively. 

 

Figure 3. 6. SEM analysis describing viral interaction with NH4
+- N (A) and COD (B) concentrations throughout the treatment stream at 

t WWTP. Standardised path coefficients and their significance are given along path arrows, which are coloured based on sign and 
significance (purple = positive, blue = negative, grey = non-significant (removed from final model)). Double-headed arrows indicate 
associations lacking a clear direction of causality, whilst the explained variance (R2) of each endogenous variable is proximal to its label. 
n = 102, χ2 = 7.79 (A, P = 0.352) and 3.64 (B, P = 0.603), RMSEA = 0.033 (A) and 0.000 (B), RMR = 0.044 (A) and 0.052 (B) and CFI = 0.997 
(A) and 1.000 (B). ° P < 0.1, * P < 0.05, ** P < 0.01, *** P < 0.001. Inf = influent, Eff = effluent. 

3.4. Discussion 

Negative density dependent viral selection of hosts is increasingly considered in efforts to describe 

bacterial mortality, diversity and function in natural environments (Suttle, 2007; Brussard et al., 

2008; Rohwer and Thurber, 2009), a paradigm unanswered, until now, in an engineered setting, 

where such interactions could cause functional failures with environmental and financial 

consequences.  The complex nature of ML microbial communities, coupled with the difficulty of 
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obtaining direct evidence of virus-host interactions (Dang and Sullivan, 2014; Brum and Sullivan, 

2015), made this a challenging prospect, however if viruses significantly influence bacterial 

dynamics then this should be visible at the total abundance level using statistical inferences. Here 

we show this is indeed the case.  

We were able to demonstrate ML virus abundance corresponded with ML AOB abundance and 

was positively associated with both ML total bacteria and AOB abundance respectively. Given 

viruses are obligate parasites and require hosts to replicate this makes intuitive sense, yet 

advocates, for the first time, coupled virus-bacteria dynamics at the total abundance level within 

ML, with greater bacterial densities plausibly increasing encounter rates, successful infections and 

thus virus abundance. We additionally sought and identified statistical associations between ML 

viruses and ML bacterial community shifts and the dynamics of specific OTU’s, suggesting virus-

host interactions, as observed previously, yet rarely, in an engineered setting (Huntula et al., 1991; 

Lee et al., 2007; Barr et al., 2010; Shapiro et al., 2010), appear to be occurring, particularly 

between viruses and highly abundant OTU’s.  

Given such taxa, along with AOB, likely dictate community function it follows that viral predation 

may be involved in observed functional failures, i.e. adversely affecting the removal of COD and 

NH4
+- N from influent wastewater. It was perhaps expected that such associations, although not 

unequivocal, were demonstrated. ML virus abundance and concentrations of COD and NH4
+- N 

were positively associated and were noteworthy predictors of respective abundances and 

concentrations in the effluent, where these relationships persisted. Such associations imply that 

increased host lysis in the ML at high virus densities, coupled with the subsequent release of 

intracellular carbon and nutrients, were a potential cause, as observed previously in lab scale 

engineered systems removing phosphorous (Barr et al., 2010; Motlagh et al., 2015). The 

observations here however are a first indication that viruses appear to influence the function of 

full-scale, nitrifying activated sludge systems. 

Conversely the virus-community function interactions demonstrated here, may imply that the 

nutritional or metabolic status of bacterial hosts is critical to lytic infection and viral proliferation 

(Proctor et al., 1993; Middelboe, 2000; Weinbauer, 2004), especially in light of the corresponding 

associations found between resource availability (NH4
+- N, nitrite, phosphate and sulphur 

concentrations) and ML virus, total bacterial and AOB abundance and bacterial community 

structure, as shown elsewhere (Hewson et al., 2003; Øvreås et al., 2003; Williamson and Paul, 

2004; Motegi and Nagata, 2007; Sandaa et al., 2009). Thus viruses in the ML could be responding 

to, not instigating, resource fluctuations and subsequent functional failures, although their 
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increased activity could exacerbate a systems ability to cope with greater, or shock, loads. 

Furthermore the concurrent, community wide abundance and structural fluctuations may also 

suggest such resource driven, deterministic triggers are filtered through bacterial hosts, and thus 

viruses are responding to, not driving, changes in the ML bacterial community. Certainly the 

association between nitrite and ML virus abundance and the ML bacterial community here and 

elsewhere (Wells et al., 2009, 2011) supports such a concept, given it can be inhibitory to bacterial 

metabolism (Philips and Verstraete, 2001; Vadivelu et al., 2006; Zhou et al., 2011) and thus halt 

viral replication, reducing counts as observed. 

Nevertheless the observed concurrent and/or sequential shifts in resources and both host and 

viral communities respectively is further, indirect evidence of viral-host interaction within full-

scale activated sludge systems. Moreover, although direct evidence is lacking, it could be argued 

that such associations are  in principle agreement with Killing the Winner” (KtW, Thingstad, 2000; 

Winter et al., 2010) and/or fluctuating selection dynamics (FSD, Hall et al., 2011; Avrani et al., 

2012). Both principles are underpinned by a metabolic cost of host resistance, thus under such 

dynamics resources drive host and subsequently viral community fluctuations, as observed. They 

also predict viral interaction with, and as a consequence oscillatory dynamics in, the most 

abundant bacterial hosts. It is thus striking that 6 of the top 10 (17 of the top 50) OTU’s were 

significantly associated with ML virus abundance, moreover the majority of these OTU’s, as 

predicted under steady-state KtW dynamics (Thingstad, 2000),  varied in their relative abundance 

but remained relatively abundant. Exceptions to this norm were Microthrix, Thiothrix and 

Tetrasphaera genera, filamentous bacteria known to periodically bloom and cause activated 

sludge bulking (a process disturbance, Martins et al., 2004; Guo and Zhang, 2012). During such 

events these organisms can dominate ML bacterial communities (relative abundance > 10% here 

and elsewhere (Griffin and Wells, 2017)), thus a viral response, as observed, would be expected 

under KtW and/or FSD. Particularly considering lytic viruses have previously been shown to 

influence filamentous organisms associated with bulking events (Kotay et al., 2011). 

Viral dispersal was also determined as an important system parameter, with viruses in the influent 

correlating with ML virus abundance and bacterial community structure (weakly). Over 82% of 

virus genotypes are shared across influent and ML viromes (Tamaki et al., 2012), suggesting 

successful mass immigration is plausible and perhaps vital to virus proliferation in activated sludge 

systems. The influx of new viruses increases population densities, replication rates and beneficial 

gene abundance, increasing advantageous mutations (Miralles et al., 1999; Morgan et al., 2005, 

2007; Ching et al., 2013) that can provide evolutionary advantages to viruses in their phage-host 
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co-evolutionary arms race (Buckling and Rainey, 2002). Such migration effects are perhaps even 

more important when one considers that ML viruses are continually washed out with process 

effluents (hence the correlation between ML and effluent virus abundance), whilst bacteria are 

maintained/augmented through sludge recirculation. 

Finally the demonstration that ML virus abundance was associated with abiotic factors supports 

recent calls in viral ecology for their inclusion in viral studies (Wigington et al., 2016). The 

regulation of surface charge and the promotion or inhibition of electrostatic interactions appeared 

highly important to ML virus abundance, with ML pH and sulphate and influent magnesium all 

playing a significant role. At low pH and high ionic and cationic strength, the net negative surface 

charge of viruses (Michen and Graule, 2010; Nap et al., 2014), bacteria (Klausen et al., 2004) and 

activated sludge flocs (Cousin and Ganczarczak, 1999; Liao et al., 2002; Wilén et al., 2003; Tixier 

et al., 2003) decreases, collectively reducing repulsive electrostatic forces and thus increasing 

virus adsorption (Schaldach et al., 2006; Pham et al., 2009) and microcolony and floc compactness 

(Cousin and Ganczarczak, 1999; Liao et al., 2002; Klausen et al., 2004). Conceivably, such 

interactions increase viral floc enmeshment and thus EPS/colloidal masking of bacterial receptors 

(Kunin et al., 2008), reducing virus proliferation and, as observed, their abundance. 

On the whole the statistically inferred relationships, including those beyond the scope of this 

paper (those identified by the ML total bacteria and AOB GLS models, as well those variables not 

discussed but contributing to the CCA ordination), have plausible physical, biological and chemical 

explanations. Those observed between ML virus abundance and ML fluoride and nitrate, which 

lack obvious mechanisms, and that between ML AOB and effluent NH4
+- N, since a negative 

relationship would be expected, are perhaps the only anomalous associations. This may suggest 

that despite being the most comprehensive time series study of virus and microbial dynamics to 

date, sample frequency and the number of exogenous factors measured was still insufficient to 

capture the true behaviour of the system. 

In summary, this study demonstrates that viruses appear to play a more central role in the 

dynamics of activated sludge systems than hitherto realised and should be considered more 

frequently when assessing the key factors governing bacterial abundance, community 

composition and functional stability. To gain further insight into virus dynamics in engineered 

systems a survey encompassing increased sample frequency, i.e. over more functionally relevant 

temporal scales, is perhaps required, whilst the identification and enumeration of active viruses 

and their hosts is paramount. Those taxa found to be associated with ML virus abundance here 

may be a good basis for investigation in this regard. 
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CHAPTER 4 
VIRUS - BACTERIA INTERACTIONS, SYNCHRONICITY AND ECOSYSTEM 

FUNCTION IN REPLICATE ENGINEERED MICROBIAL SYSTEMS 
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Viruses are ubiquitous, abundant and a key component of natural environments, influencing 

bacterial host abundance, community composition and ecosystem functions. Assessment of their 

role in the microbial ecology of engineered systems has however been precluded by a paucity of 

data, a trend analogous to the examination of biotic and abiotic drivers of natural virus abundance 

variations. Yet evaluation of the former fundamentally contributes to the latter, given the physical 

partitioning of engineered systems into homogeneous ecological islands with well-defined 

chemical and physical conditions. Hence virus abundance, in conjunction with total and ammonia 

oxidising bacterial abundances, bacterial community profiles, and a suite of environmental and 

operational parameters, was monitored every other day for ~200 days in 12 replicate lab-scale 

activated sludge systems. We demonstrate that mixed liquor virus abundances were 

spatiotemporally variable and asynchronous, yet statistically associated with total bacterial 

abundances, the composition of bacterial communities, bacterial diversity and a number of 

previously identified abiotic factors (Chapter 3, including effluent concentrations of COD and NH4
+- 

N). Such findings corroborate previous findings (Chapter 3) and imply viruses may play a role in, 

or respond to, bacterial community divergences, thus are more central in the dynamics of 

activated sludge system than hitherto realised.  

4.1. Introduction 

Activated sludge systems, the most frequently used form of biological wastewater treatment 

(Seviour et al., 2010), are reliant on dozens, perhaps hundreds, of different bacterial species to 

come together and form a microbial community consistently capable of removing organics and 

nutrients from wastewaters. Thus the function, functional stability and robustness of such systems 

is ultimately dictated by the mechanisms involved in the assembly and maintenance of their 

microbial communities. Our knowledge of these processes, despite global application, is however 

poor, thus functional failures are observed frequently, unpredictably and often inexplicably (Curtis 

and Sloan, 2006). 

In response, contemporary wastewater microbiology has elucidated two classes of community 

assembly mechanism at work in engineered biological systems, niched-based deterministic factors, 

such as environmental and operational conditions, and stochastic processes, including microbial 

birth, death, immigration and speciation (van der Gast et al., 2008; Wells et al., 2009, 2011; Ayarza 

et al., 2010; Ofiteru et al., 2010; Ayarza and Erijman, 2011; Valentin-Vargas et al., 2012). Indeed 

the literature has utilised replicated or geographically localised biological reactors to evaluate the 

generality of such principles, with synchronous (Falk et al., 2007; Vanwonterghem et al., 2014; 

Griffin and Wells, 2017) and asynchronous (Kaewpipat and Grady, 2002; Fernandez et al., 2000; 
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Gentile et al., 2007; Beecroft et al., 2012; Zhou et al., 2013) microbial communities invoking niche-

based deterministic factors and neutral processes as drivers of observed behaviour respectively.  

Considering recent findings (Lee et al., 2007; Barr et al., 2010; Shapiro et al., 2010; Motlagh et al., 

2015, Chapter 3) such an approach could help further elucidate the role viruses play in the 

dynamics of engineered systems. Moreover, given the physical partitioning of wastewater 

treatment plants into homogeneous ecological islands with well-defined and monitored chemical 

and physical conditions and functions (Daims et al., 2006), such systems offer a fertile testing 

ground for answering recent calls in viral ecology; that is, the need for greater efforts in 

understanding temporal variations in total virus abundance and how microbial abundances and 

exogenous factors relate (Breitbart, 2012; Brum and Sullivan, 2015; Wigington et al., 2016). In this 

regard lab based systems are particularly pertinent. Their accessibility facilitates high frequency 

temporal sampling, whilst their amenability to manipulation and replication enables the generality 

of specific deterministic drivers of virus abundance to be tested.  

Accordingly the primary objective of this work was to gain a better understanding of total virus 

abundance dynamics in activated sludge systems. Thus their abundance and relationship with 

total bacterial and ammonia oxidising bacterial (AOB) abundance, bacterial community structure 

and a suite of exogenous factors, including functional stability (COD and NH4
+-N removal), was 

assessed at high temporal frequency in 12 replicate lab scale activated sludge systems. 

Temperature, known to influence microbial and virus communities in activated sludge (e.g. Wells 

et al., 2009, 2011; Ofiteru et al., 2010) and aquatic environments respectively (Wommack and 

Colwell, 2000; Weinbauer, 2004), was manipulated in 6 of these systems to instigate community 

divergences. Thus temporal population synchrony was quantified to identify repeatable viral and 

bacterial community responses to abiotic or biotic triggers, alone or reciprocally. Synchrony was 

thus examined across multiple components, including individual total abundances, bacterial 

community profiles and abiotic conditions. 

4.2. Materials and Methods 

4.2.1. Reactor Set Up 

Twelve replicate continuous flow stirred-tank reactors (CSTR’s), with a working volume of 950 mL 

± 26 mL, were operated simultaneously for 204 days. At day 0 reactors were seeded with activated 

sludge from a nitrifying domestic wastewater treatment plant (WWTP; Tudhoe Mill, Durham, 

United Kingdom (UK)) at a mixed liquor suspended solids (MLSS) concentration of ~2 g L-1. Settled 

sewage (influent), collected weekly and stored at 4oC, was continuously fed to each CSTR to 
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achieve a hydraulic and solids retention time (HRT/SRT) of ~4 days. Dissolved oxygen (DO) 

concentrations were maintained above 4 mg L-1, temperature was controlled using two cooling 

incubators (MIR554, Panasonic, UK) and each CSTR was stirred at 200 rpm using magnetic stirrers 

(Maxdrive 1 Eco, 2 Mag, Germany) and mixing bars (40 mm × 8 mm ø). The temperature, pH and 

dissolved oxygen (DO) concentration within each CSTR was monitored in real time using individual 

probes (Type K Thermocouples (RS, UK), F-635 Fermprobes and D-140 Oxyprobes (Broadley James, 

UK) respectively) and associated transmitters (MXD70, Broadley James, UK), data loggers (PICO, 

UK) and computer software (PicoLog 5.21.5, PICO, UK), with readings taken every 10 minutes. 

4.2.2. CSTR Operational Conditions 

All CSTR’s were initially operated under steady state conditions, where possible, for a period of 72 

days, allowing for acclimatisation. Thus temperature and DO concentrations were maintained at 

14.5oC and above 4 mg L-1 respectively, whilst pH was left to stabilise naturally. In order to maintain 

conditions of an open, system real wastewater was utilised and therefore influent characteristics, 

including soluble chemical oxygen demand (CODs), ammonium (NH4
+-N) and phosphate 

concentrations, varied on a weekly basis.  

Once stable conditions were achieved 6 CSTR’s (from herein called Test (T)) were subjected to a 

132 day temperature sine wave mimicking annual variation in the UK; thus temperature’s ranged 

from 8oC to 21oC. The remaining 6 CSTR’s (from herein called Control (C)) were exposed to a 

constant temperature of 14.5oC. All other operational and environmental conditions were 

maintained identically across both sets of CSTR’s 

4.2.3. Sample Collection and Storage  

Every other day 40 mL of mixed liquor (ML) was collected from each CSTR into sterile 50mL 

centrifuge tubes and divided into 3 sub samples. 15 mL of each sample was stored at 4oC for viral 

analysis, which was undertaken within 1 hour of sampling. A second 15mL was stored at -20oC 

until subsequent molecular analysis, with the remaining 10 mL stored at -80oC as an archived 

sample. Concurrent influent and effluent samples, as well as weekly influent samples, were also 

collected. Analysis was performed on samples collected every other day unless otherwise stated. 

4.2.4. Analytical Methods 

Influent and effluent CODs and NH4
+-N concentrations were determined using Merck COD and 

NH4-N test kits (VWR, UK) respectively, whilst anion concentrations, which included nitrate, nitrite, 

sulphate and phosphate, were determined using high performance Ion Chromatography (Dionex 
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ICS-1000 with AS40 auto sampler). Samples were filtered through a 0.2 μm polyethersulfone 

membrane prior to analysis. Influent and ML suspended/volatile suspended solids (SS/VSS) were 

determined according to Standard Methods (APHA, 1998). Influent trace metals, including 

cadmium, zinc, lead and copper, were measured weekly by inductively coupled plasma optical 

emission spectroscopy (ICP-OES) (Vista MPX axial ICP-OES, Varian, UK), as described by Martin et 

al. (1994). Samples were acidified on collection to pH < 2, digested and then filtered through a 

0.45 μm polyethersulfone membrane prior to analysis. Finally temperature, DO and pH within 

each CSTR was measured as described in 2.1, with influent pH additionally measured manually 

(Jenway 3310 pH meter). 

4.2.5. Molecular Methods 

4.2.5.1. Flow Cytometry 

For virus enumeration, 1mL sub-samples of influent (every week) and ML were taken, transferred 

into 2 mL cryovials and fixed at a final concentration of 0.5% Glutaraldehyde for 15-30 minutes at 

4oC in the dark. Samples were then flash frozen in liquid nitrogen and stored at -80oC. After 

defrosting samples were pre-treated and analysed in triplicate as described by Brown et al. (2015 

(Chapter 2)) using a FACScan flow cytometer (Becton Dickinson, USA) equipped with a 15-mW 

488-nm air-cooled argon-ion laser and a standard filter setup. 

4.2.5.2. DNA Extraction 

DNA was extracted from 15 mL of influent (every week) and ML respectively, both were 

centrifuged at 3392 × g for 15 minutes and the supernatant removed down to a working volume 

of 250 µL. Cell wall disruption was then carried out using the FastDNA SPIN Kit for soil (MP 

Biomedicals, USA), thus 244.5 µL of sodium phosphate buffer and 30.5 µL of MT buffer were added 

to samples and the mixture transferred to Lysing Matrix E tubes. Samples were then lysed at 6.5 

ms-1 for 30 seconds in a FastPrep instrument (MP Biomedicals, USA) and centrifuged at 14000 × g 

for 15 minutes. DNA from 250 µL of the supernatant was then purified using a MagNA Pure LC 2.0 

(Roche, UK) and the MagNA Pure LC DNA Isolation Kit III 

4.2.5.3. Illumina Sequencing  

Sample preparation for Illumina sequencing generally followed the protocol of Caporaso et al. 

(2012). Thus the V4 region of the bacterial 16S rRNA gene was amplified using primers 515F 

(aatgatacggcgaccaccgagatctacactatggtattgtGTGCCAGCMGCCGCGGTAA; adapter, primer pad and 

primer linker in small letters; and specific primer sequence in capital letters) and 806R 
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(caagcagaagacggcatacgagatbarcodeagtcagtcagccGGACTACHVGGGTWTCTAAT), the latter was 

barcoded with a 12-base error-correcting Golay code to facilitate sample multiplexing. Each 

sample was amplified in duplicate, pooled and then cleaned using a MinElute 96 UF Purification 

Kit as per the manufacturer’s instructions (Qiagen Ltd., West Sussex, UK). PCR reactions consisted 

of: 2 µl DNA extract, 20 µl 5 Prime Hot Master Mix (VWR, Lutterworth, UK), 1 µl each of forward 

and of reverse primer (10 µM final concentration), and 26 µl Molecular-grade water. Reactions 

were denatured at 94 °C for 3 mins, with amplification proceeding for 35 cycles at 94 °C for 45 s 

(further denaturing), 50 °C for 60 s (annealing) and 72 °C for 90 s (extension); a final extension at 

72 °C for 10 min was added to ensure complete amplification. The concentration and purity of 

pooled amplicons was assessed using a Quant-iT PicoGreen dsDNA assay kit (Life Technologies, 

Paisley, UK). A composite sample for sequencing was created by combining all samples in 

equimolar amounts. The composite sample was cleaned twice using Agencourt AMPure XP beads 

(Beckman Coulter, High Wycombe, UK) according to the manufacturer’s instructions, with 

fragment selection undertaken using E-Gel 2% agarose gels (Life Technologies, Paisley, UK). The 

size-selected fragment was then purified using the QIAquick PCR purification kit (Qiagen Ltd., West 

Sussex, UK) and quantified using the Quant-iT PicoGreen dsDNA assay kit, to ensure the sample 

contained enough DNA for sequencing analysis. Sequencing was carried out on the Illumina MiSeq 

personal sequencer at the Centre for Genomic Research, University of Liverpool. A total of 9.5 

million reads were obtained.  

Raw reads were processed using the DADA2 (v. 1.4, Callahan et al., 2016) pipeline, specifically 

following the workflow for Big Data (https://benjjneb.github.io/dada2/bigdata.html), and using R 

version 3.4.0 (R Core Team, 2017). Forward and reverse read pairs were trimmed and filtered 

(minimum length 200 nucleotides, EEmax < 2 expected errors). Amplicon sequence variants (ASV’s) 

were independently inferred in each sample from forward and reverse reads using the run-specific 

error rates, and then joined using the ~mergePairs~ function. Chimeric ASVs were inferred and 

identified using ~removeBimeraDenovo~ and removed. This resulted in 11253 final ASVs (per 

sample average = 21105, min = 2126 and max = 70897) which were taxonomically classified against 

the SILVA database (v.128, Quast et al., 2013) using the DADA2 implementation of the RDP's naive 

Bayesian classifier (Wang et al., 2007). 

4.2.5.4. qPCR 

Quantification of total bacteria and AOB was carried out using qPCR and amplification of the 16S 

rRNA gene and the ammonia monooxygenase (amoA) gene respectively. Samples were amplified 

in triplicate on a CFX96 Real-Time PCR Detection System (Bio-Rad, UK) using the primer sets 338F 
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(Muyzer et al., 1993) and 1046R (Huber et al., 2007) for total bacteria and amoA-1F* (Stephen et 

al., 1999) and amoA-2R (Rotthauwe et al., 1997) for AOB. qPCR reactions contained 3 L of 

template DNA (sample DNA, standard DNA or molecular grade water (negative control)), 0.5 L of 

forward and reverse primer (10 moles per L), 5 l of SsoFast EvaGreen supermix (Bio-Rad, UK) 

and 1 l of Molecular-grade water. Reaction conditions were: 1 cycle at 98oC for 3 min, followed 

by 40 cycles consisting of 98oC for 5 s and 60oC (338F/1046R) or 56oC (amoA-1F/amoA-2R) for 5 s. 

Purified circular plasmids containing the target gene were used as standards and run in triplicate 

for each qPCR reaction.  Efficiencies for all qPCR reactions ranged between 90-110% and had a 

R2≥0.99. Gene copy numbers per unit volume were converted to cell numbers per unit volume 

using accompanying sequence data for the 16S rRNA gene (described in Appendix III) and 

assuming each AOB cell contained 2 copies of the amoA gene (McTavish et al., 1993; Norton et al., 

2002). 

4.2.6. Statistical Analysis 

All statistical analysis, unless otherwise stated, was undertaken in RStudio (v. 1.0.143, R Core Team, 

2017) using R version 3.4.0 (R Core Team, 2017).  

4.2.6.1. Comparison of CSTR’s Abiotic Conditions 

The performance of and abiotic conditions within each CSTR were compared and analysed for 

significant differences using the Kruskal-Wallis test (P > 0.05, kruskal.test, “stats” v. 3.3.2, R Core 

Team, 2017) and, if significant, the Dunn test with Bonferroni corrections (P > 0.05, dunnTest, 

“FSA” v. 0.8.12, Ogle, 2017). To justify non-parametric analysis data was checked for normality 

and homogeneity of variance using the Anderson-Darling Test (P > 0.05, ad.test, “nortest” v. 1.0-

4, Gross and Ligges, 2015) and the Bartlett Test (P > 0.05, bartlett.test, “stats” v. 3.3.2, R Core 

Team, 2017) respectively. 

The synchrony of functional components, defined here as synchronous changes in effluent 

concentrations of COD and NH4
+-N respectively in separate CSTR’s, was calculated using 

spearman’s rank correlation (cor.test, “stats” v. 3.4.0, R Core Team, 2017). For each component, 

N, spearman’s correlation 𝑆𝑖,𝑗
𝑁  of its concentration across time in each CSTR pair ( 𝑖, 𝑗 ) was 

calculated. Global (𝑆̅ ), among test (𝑆𝑇
̅̅ ̅ ) and among control (𝑆𝐶

̅̅ ̅ ) synchrony values for each 

component were then calculated by averaging 𝑆𝑖,𝑗
𝑁  across all, test and control CSTR pairs 

respectively. Owing to compositional effects (Aitchison, 1982) and inherent autocorrelation in 

time-series data (Liebhold et al., 2004) correlation coefficients will not necessarily be zero for 

uncorrelated components. 
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Finally standardised Euclidean distances were generated for all possible pairs of samples using 

abiotic measurements collected from the mixed liquor and effluent of each CSTR. This distance 

matrix was then used to generate analysis of similarity (ANOSIM) and analysis of variance (anosim 

and adonis respectively with 999 permutations, “vegan” v. 2.4-3, Oksanen et al., 2017) statistics, 

allowing assessment of the similarity in the abiotic conditions across all, between test and control, 

among test, among control and between all CSTR pairs. ANOSIM and Adonis generate an R and R2 

statistic respectively, the magnitude of R, which ranges between 0 and 1, and R2 indicates the 

degree of separation between groups of samples, with smaller and larger values indicating lower 

and greater separation respectively. For pairwise analysis between all CSTR’s Bonferroni 

corrections were applied to R and R2 P-Values. 

4.2.6.2. Comparison of CSTR’s Biotic Conditions 

Significant differences between, and the synchronicity of, each CSTR’s biotic conditions was 

analysed as in 4.2.6.1 using total virus, bacteria and AOB abundance and alpha diversity () indices 

D1 (exponential of Shannon diversity) and D2 (inverse of Simpson diversity) (diversity, “vegan” v. 

2.4-3, Oksanen et al., 2017), which better represent rare and common taxa respectively (Vuono 

et al., 2015). Correspondence analysis (CA) was performed to assess the temporal development 

of bacterial community composition in each CSTR (cca, “vegan” v. 2.4-3, Oksanen et al., 2017), the 

degree of association, or concordance, between each CSTR’s microbial community was then 

assessed using procrustean matrix superimposition on the first 3 CA axes (protest, “vegan” v. 2.4-

3, Oksanen et al., 2017). This generates an m2 statistic, the sum of squared residuals between 

scaled and rotated configurations of each ordination solution, which varies between 0 and 1, with 

smaller values indicating stronger concordance. 

The Bray-Curtis dissimilarity coefficient (βBC) was also calculated for all possible pairs of samples 

using microbial community data, allowing the similarity in microbial communities across all, 

between test and control, among test and among control CSTR pairs to be assessed using ANOSIM 

and Adonis as in 4.2.6.1. To further asses temporal shifts in the microbial communities of each 

CSTR a pairwise βBC and Sorenson’s dissimilarity index (βsor) was calculated between each 

successive sample (beta.pair, “betapart” v.1.4-1, Baselga et al., 2017). The latter was partitioned 

to allow assessment of taxa incidence variations caused by species replacement (βsor-tur) or 

nestedness (βsor-nes), i.e. taxa at t are replaced with different taxa at t+1 or taxa at t+1 are a subset 

of taxa at t (beta.pair, “betapart” v.1.4-1, Baselga et al., 2017). The synchronicity of these 

components across CSTR’s was assessed as in 4.2.6.1. 
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4.2.6.3. Virus – Total Abundance Biotic and Abiotic Interactions 

Virus total abundance biotic and abiotic interactions were assessed by generation of a multivariate 

linear mixed effects model, fit by maximum likelihood (lme, “nlme” v. 3.1-131, Bates et al., 2017), 

describing ML virus abundance across all 12 CSTR’s. All measured biotic and abiotic parameters, 

unless otherwise stated (see footnotes of Table IV.16), were initially used as covariates (Ki = ~51, 

n = 847), with multivariate ordinary least squares (OLS) regression (lm, “stats” v. 3.4.0, R Core 

Team, 2017) followed by bidirectional elimination (stepAIC, “MASS” v. 7.3-47, Venables and Ripley, 

2002) based on Bayesian information criterion (BIC) used for model simplification and selection. 

OLS models were then rerun as lme to allow incorporation of a correlation structure 

(corCAR1(form = ~ Day) and CSTR as a random effect, helping to account for temporal and spatial 

dependence and slight variations between CSTR’s (Zuur et al., 2010). To guarantee parsimony and 

adherence to the assumptions of regression manual backward elimination and forward selection 

based on BIC was subsequently undertaken. 

The model was checked visually for linearity (Fig. IV.7 A and B), homoscedasticity (Fig IV.7 B and 

C), residual autocorrelation (acf and pacf, “stats” v. v. 3.4.0, R Core Team, 2017, Fig IV.7 F and G), 

and normality of fixed and random effects (qqPlot, “car” v. 2.1-4, Fox et al., 2016, Fig. IV. 7D and 

E), with the Anderson-Darling Test (p > 0.05, ad.test, “nortest” v. 1.0-4, Gross and Ligges, 2015) 

additionally used to confirm the latter. Collinearity amongst explanatory variables was assessed 

by variance inflation factor’s (VIF’s, vif, “car” v. 2.1-4, Fox et al., 2016), with variables contributing 

to VIF’s > 3 removed based on statistical significance (p-value) until all fell below this threshold 

(Zuur et al., 2010). To aid in adherence to these assumptions variables were either transformed 

(log10 for virus, total bacteria and AOB abundances (biotic) and natural log for COD, NH4
+- N, nitrate, 

nitrite and phosphate terms (abiotic)) or standardised to mean 0 variance 1 (all other 

environmental and operational parameters (abiotic)). Finally ANOVA (anova, “stats” v. v. 3.4.0, R 

Core Team, 2017) was used to test the statistical significance of the models correlation structure, 

whilst a pseudo-R2 was calculated to ascertain a representation of the variance in ML virus 

abundance explained by the model (r.squaredGLMM, “MuMin” v. 1.15.6, Barton, 2016). 

4.2.6.4. Virus – Community Structure Interactions 

Canonical correspondence analysis (CCA) was performed to assess the response of bacterial 

communities in all 12 CSTR’s to abiotic and biotic conditions (cca, “vegan” v. 2.4-3, Oksanen et al., 

2017), with all measured biotic and abiotic parameters, transformed as in 2.6.3, initially used as 

explanatory variables (Ki = ~51, n = 847) unless otherwise stated (see caption of Fig.4). Automated 
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bidirectional selection, based on Akaike information criterion (AIC) and Monte Carlo permutation 

tests (999 permutations), was then used for model simplification and thus identification of the 

most significant explanatory variables (step, test=“perm”, “stats” v. v. 3.4.0, R Core Team, 2017). 

Collinearity was assessed by VIF’s (vif.cca, “vegan” v. 2.4-3, Oksanen et al., 2017), with variables 

contributing to VIF’s > 3 being removed as in 4.2.6.3 (Zuur et al., 2010). Finally the statistical 

significance of the CCA model (constrained components), its axes and the marginal effects of each 

explanatory variable were assessed using permutation tests (999 permutations, anova.cca, “vegan” 

v. 2.4-3, Oksanen et al., 2017). Note CCA was chosen over redundancy analysis as unimodal 

approaches are better suited to relative abundances and the presence of zeros (Ramette, 2007). 

Local similarity analysis (LSA, Ruan et al., 2006) was utilised to observe correlations between ML 

virus abundance and the 50 most abundant OTU’s in each set of 6 replicate CSTR’s. Analysis was 

undertaken using eLSA v 1.0.2 (Xia et al., 2011; 2013) in Python v 2.7, its use over more traditional 

approaches (e.g. Pearson and Spearman’s rank correlation) was justified given it assesses local 

(short periods of time) and time-delayed associations across replicates, as well as those non-

lagged and occurring across the whole sampling period (Xia et al., 2011; 2013). A maximum time 

delay of three was utilised (delayLimit = 3), P-values were calculated by permutation tests (1000, 

P-valueMethod = perm), the required precision of P-values was set at 1/1000 (precision = 1000), 

the number of replicates for each time point was set at six (repNum = 6), replicate data was 

summarised as an absolute deviation weighted median (trasnFunc = MAD)  and raw data was rank-

normalised and z-transformed (normMethod = robustZ, Ruan et al., 2006; Xia et al., 2011; 2013). 

Multiple hypothesis correction was undertaken using Q-values (Storey, 2002). The LSA output was 

then visualised as an association network in Cytoscape v 3.6.0 (Shannon et al., 2003), only 

correlations with a P-value ≤ 0.05, a LSA score (LS) ≥ 0.3 and a Q-value ≤ 0.05 were examined. 

Calculation of the peak (max relative abundance) to average (mean relative abundance) ratio 

(PAR) for examined OTU’s allowed assessment of their persistence within the ML, three arbitrarily 

defined ecological categories facilitated this process; persistent (PAR ≤ 5), intermittent (PAR > 5 < 

10 ) and transient (PAR ≥ 10). 

The influence of virus abundance on both  and β diversity was assessed by calculation of 

spearman’s rank correlation coefficients (ρ, cor.test, “stats” v. 3.4.0, R Core Team, 2017) between 

ML and influent virus abundance at t and D1 and D2 diversity indices at t and βBC, βsor-tur and βsor-nes 

between t and t+1 respectively. Its use, over Pearson correlation, was justified since all variable 

combinations, transformed as in 4.2.6.3, were not bivariate normal (roystonTest, “MVN” v. 4.0.2, 
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Korkmaz et al., 2014). Bonferroni corrections were applied to all correlations, whilst for 

correlations involving β diversity sample 102 for ML and influent virus abundance was disregarded. 

4.2.6.5. Virus – Community Function Interactions 

Virus-community function interactions were assessed by calculation of spearman’s rank 

correlation coefficients between ML and influent virus abundance and ML and effluent COD and 

NH4
+-N concentrations respectively, performed, justified and corrected as in 4.2.6.4.  

4.3. Results 

4.3.1. Functional performance and Abiotic Conditions 

4.3.1.1. Acclimatisation (day 0 - 72) 

Throughout acclimatisation all CSTR’s consistently reduced influent CODs to compliant levels (< 

125 mg L-1, UK discharge consent), with effluent CODs concentrations not differing significantly 

amongst CSTR’s (P > 0.05, Fig. IV.2, Table IV.1, IV.2 and IV.4). Nitrification was less efficient and 

more unstable (Fig. IV.3), with effluent concentrations of NH4
+- N, nitrate and nitrite varying 

temporally, which was significant for the latter, between CSTR’s (P > 0.05, P > 0.05 and P < 0.05 

respectively, Fig. IV.3, Table IV.1, IV.2 and IV.4). Certainly nitrite accumulation, thus incomplete 

nitrification, was periodically evident throughout start up (C1, 2 and 3 and T1, 3, 4, 5 and 6), with 

stable nitrification and compliant effluent (< 5mg L-1 ammonia, UK discharge consent), only 

achieved across all CSTR’s on day 52 (Fig. IV.3). Biomass concentrations dropped from seeded 

concentrations of ~2 g L-1 SS, rapidly and consistently in all CSTR’s (P > 0.05 for SS and VSS), to an 

operating concentration of ~0.1 g L-1 SS (~0.1 g L-1 VSS) on day 30  (Table IV.2 and IV.4). 

Despite a heavily controlled environment, influent flow rates, thus the HRT/SRT of CSTR’s, 

temporally fluctuated, with significant differences between CSTR’s (P < 0.05 and P < 0.05 

respectively, Table IV.2 and IV.4). Subtle temporal shifts in ML temperature and DO 

concentrations similarly caused significant spatial discrepancies (P < 0.05 and P < 0.05 respectively, 

Fig. IV.1, Table IV.2 and IV.4), whilst more pronounced temporal variations in ML pH, which varied 

from 4.31 – 8.15 across all CSTR’s, also resulted in significant differences between CSTR’s (P < 0.05, 

Fig. IV.1, Table IV.2 and IV.4). In contrast effluent (ML) phosphate, sulphate, fluoride and chloride 

concentrations, which were temporally stable, were significantly similar between all CSTR’s (P > 

0.05 for all, Fig. IV.2, Table IV.2 and IV.4).  
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4.3.1.2. Temperature variation (day 72 - 204) 

During this period all CSTR’s consistently reduced influent CODs to compliant levels, although 

effluent concentrations were significantly different across CSTR’s (P < 0.05, Fig. IV.2, Table IV.3 

and IV.5, seemingly caused by T1). Despite effluent concentrations of NH4
+-N, nitrate and nitrite 

varying temporally and, for the former, significantly (P < 0.05, P > 0.05 and P > 0.05 respectively) 

between CSTR’s, nitrification was also generally stable (Fig. IV.3, Table IV.3 and IV.5), although 

both nitrite accumulation and noncompliant effluent NH4
+-N concentrations were periodically 

evident (particularly from day 186 and in T4, Fig. IV.3). Biomass concentrations averaged 0.102 ± 

0.070 g L-1 SS (0.092 ± 0.063 g L-1 VSS) across all CSTR’s and were largely temporally stable (Fig. 

IV.1), though concentrations in C1 were statistically different from those in other CSTR’s (P > 0.05 

for SS and VSS, Table IV.3 and IV.5). 

Influent flow rates, and thus the HRT/SRT of CSTR’s, temporally fluctuated, with significant 

differences between CSTR’s (P < 0.05 and P < 0.05 respectively, Table IV.3 and IV.5) like those 

during acclimatisation. Temporal and significant spatial temperature differences were also found 

(P < 0.05, Fig. IV.1, Table IV.3 and IV.5), though mean temperatures across Control and Test CSTR’s 

were statistically comparable (P > 0.05, 14.51 ± 0.195oC and 14.50 ± 4.365oC respectively) due to 

the mirrored nature of the temperature sinewave. DO concentrations in all CSTR’s averaged 7.94 

± 1.36 mg L-1 (i.e. above the 4 mg L-1 target) but showed temporal and significant spatial 

discrepancies (P < 0.05, Table IV.3 and IV.5). pH similarly varied temporally (Fig. IV.1), with 

divergences in C3 and C6 causing significant differences between CSTR’s (P < 0.05, Table IV.3 and 

IV.5). In contrast, effluent (ML) phosphate, sulphate, fluoride and chloride concentrations were 

temporally stable and significantly similar across all CSTR’s (P > 0.05 for all, Fig. IV.2, Table IV.3 and 

IV.5), like they were during acclimatisation. 

4.3.2. Spatiotemporal Dynamics of Virus, Bacterial and AOB Abundances 

4.3.2.1. Baseline ML Abundances (day 62 – 72) 

ML total virus, bacterial and AOB abundances were determined from day 62 onwards, providing 

base line abundances for all CSTR’s prior to temperature variation (day 72). ML virus abundances 

decreased from seeded concentrations of 3.41 × 109 viruses mL-1 to an average concentration of 

1.79 ± 1.12 × 108 viruses mL-1 on day 62 for all CSTR’s, although concentrations ranged from 2.85 

× 107 viruses mL-1 in T1 to 3.64 × 108 viruses mL-1 in C3 (Fig. 4.1). During this 10 day period, ML 

viruses were temporally dynamic and found to be statistically different between CSTR’s (P < 0.05, 

Fig. 4.1, Table IV.7 and IV.8), driven by differences in C5 and T2.  
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ML bacterial and AOB abundances similarly decreased from seeded concentrations of 4.43 × 107 

bacteria mL-1 and 1.69 × 106 AOB mL-1, to 4.43 ± 3.31 × 107 bacteria mL-1 and 1.01 ± 1.02 × 105 AOB 

mL-1 across all CSTR’s on day 62. No significant differences in either bacterial or AOB abundances 

were found between CSTR’s (P > 0.05 and P > 0.05 respectively, Fig. 4.1, Table IV.7 and IV.8) 

despite slight temporal variations across the 10 days.  

4.3.2.2. ML Abundances during Temperature Variation (day 72 - 204) 

ML virus abundance continued to be temporally and spatially dynamic within and between CSTR’s 

respectively (Fig. 4.1, Table IV.7 and IV.8), averaging 0.94 ± 0.54 × 108 viruses mL-1 and ranging 

across an order of magnitude  between CSTR’s from 1.63 × 107 viruses mL-1 in T6 to 3.57 × 108 

viruses mL-1 in T3 (Fig. 4.1). Consequently significant differences were found between individual 

CSTR’s (Fig. 4.1, Table IV.7 and IV.8), although abundances were statistically comparable between 

Control and Test reactors (P > 0.05).  

ML bacterial and AOB abundances were similarly temporally and spatially dynamic, averaging 1.80 

± 3.07 × 107 bacteria mL-1 and 1.33 ± 2.53 × 105 AOB mL-1 across all CSTR’s (Fig. 4.1, Table IV.7 and 

IV.8). However significant discrepancies between CSTR’s were only found for ML AOB (P < 0.05) 

and not ML bacteria (P > 0.05, Fig. 4.1, Table IV.7 and IV.8), whilst no significant difference was 

found between Control and Test reactors for either community (P > 0.05 and P > 0.05 respectively).  

4.3.3. Spatiotemporal Interactions  

4.3.3.1. Virus Interactions with Total Biotic and Abiotic Conditions  

Fitted values from the ML virus linear mixed-effects model showed some disparity from observed 

abundances (Fig. IV.4 A), with explanatory variables accounting for 30% of abundance variations 

across time and between CSTR’s. The model did, however, identify strong positive associations 

with ML total bacterial abundance (P < 0.001), MLSS (P < 0.001), ML pH (P < 0.01) and effluent 

chloride concentrations (P < 0.01, Table IV.9). In contrast influent calcium (P < 0.05) and effluent 

nitrate (P < 0.01) concentrations, as well the HRT of CSTR’s (P < 0.001), were highly negatively 

associated (Table IV.9).  
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Figure 4. 1. Temporal variation in the biotic conditions within each CSTR over the 204-day study. Dashed grey line represents the end 
of acclimatisation. (A – F) Control 1 – 6, (G – L) Test 1 – 6. 

4.3.3.2. Virus Interactions with Bacteria Community Structure 

The CCA ordination explained the majority of observed variance in taxa-environment associations 

(64.5%, Table IV.10). All four axes displayed high taxa-environment correlations (Table IV.10), 
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indicating strong associations between taxa, viruses and abiotic conditions (Fig. 4.2). ML pH (P < 

0.001) and temperature (P < 0.001) were the most significant variables to the ordination followed 

by influent silicon (P < 0.001) and ML DO (P < 0.001) respectively (Fig. 4.2 and Table IV.10).  ML (P 

< 0.001) and influent (P < 0.001) virus abundance were also highly significant, whilst other notable 

variables included influent potassium (P < 0.001) and effluent chloride (P < 0.001) and phosphate 

(P < 0.001, Fig. 4.2 and Table IV.10). 

 

Figure 4. 2. CCA ordination of spatiotemporal ML bacterial community dynamics and associated biotic and abiotic variables within each 
CSTR (A and B Controls, C and D Tests) over the 204-day study, axes 1 and 2 (A and C) and 3 and 4 (B and D) respectively. Points and 
associated numbers represent individual samples, coloured and shaped based on sample and CSTR. Proximity of samples indicates 
similarities in community composition. Arrows indicate the direction of increase in each explanatory variable, their length indicates 
the strength of correlation with each axis and the angle between arrows indicates the approximate degree to which explanatory 
variables are correlated. Inf = influent, Eff = effluent. 

ML virus abundance was found to be significantly associated (LS > 0.3, P ≤ 0.05 and Q ≤ 0.05) with 

8 of the top 50 OTU’s in control CSTR’s (Fig. 4.3), whilst in test CSTR’s 9 of the top 50 were 

associated. In the controls 2 of these associations had no time lag (Fig. 4.3 A), both were negative 
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(OTU’s 3306 and 1585), 5 had a time delay of 2, 4 positive (OTU’s 1585, 4187, 2315 and 8856) and 

1 negative (OTU 10048), and 1 had a positive time delay of 3 (OTU 10044). The majority of these 

OTU’s were present intermittently (PAR > 5 < 10) or transiently (PAR ≥ 10) within control CSTR’s 

(Fig. 4.3 A), whilst noteworthy genera included Nannocytis (OTU 2315) and Haliscomenobacter 

(OTU 4187). Of the 9 associations identified in the test CSTR’s 2 had no time lag, 1 positive (OTU 

1303) and 1 negative (OTU 7650), 1 had a positive time delay of 2 (OTU 7705) and 6 had a time 

delay of 3, 4 positive (OTU’s 6072, 9456, 9507 and 10046) and 2 negative (OTU’s 8248 and 4004). 

Again the majority of these OTU’s were present intermittently (PAR > 5 < 10) or transiently (PAR 

≥ 10, Fig. 4.3 B), whilst noteworthy genera included Afipia (OTU 9456), Aquabacterium (OTU 7709) 

and Phenylobacterium (OTU 9507). No OTU was found to be significantly associated (LS > 0.3, P ≤ 

0.05 and Q ≤ 0.05) with ML virus abundance in both control and test CSTR’s.  

 

Figure 4. 3. . Network visualisation of LSA associations between all OTU’s from the top 50 most abundant that were associated with 
ML virus abundance (LS ≥ 0.3, P ≤ 0.05 and Q ≤ 0.05) in control (A) and test (B) CSTR’s respectively. Circular nodes indicate bacterial 
taxa, coloured and sized based on the OTU’s PAR (≤ 5 = white, > 5 < 10 = light blue and ≥ 10 = dark blue) and mean relative abundance 
respectively. For reference OTU 10044 and OTU 4184 had mean relative abundances of 1.56%, the highest, and 0.35%, the lowest. The 
diamond shaped node indicates ML virus abundance. Solid and dashed lines indicate positive and negative associations respectively, 
whilst a lines colour indicates the correlations delay (teal = 0, purple = 1, yellow = 2 and green = 3). Arrows point to the delayed, or 
trailing, node in delayed associations. 

Corroboratory correlations were found between ML virus abundance at time t and shifts in βBC, 

βsor-nes and βsor-tur between t and t+1 (P < 0.05, 0.01 and 0.1 respectively, Fig. 4.4 B), whilst ML and 

influent virus abundance was also highly positively correlated with both Hill’s diversity indices at 

time t (P < 0.001 for D1 and D2 and P < 0.001 and P < 0.05 for D1 and D2 respectively, Fig. 4.4 A). 



72 
 

 

Figure 4. 4. Spearman’s rank correlation coefficients describing virus – community structure (A and B) and virus – community function 
(C) interactions. n = 847 (A), 835 (B) and 864 (C
Multivariate Normality Test: P > 0.05 for all correlations. Inf = Influent and Eff = effluent. ° P < 0.1, * P < 0.05, ** P < 0.01, *** P < 0.001. 

4.3.3.3. Virus Interactions with Community Function 

ML virus abundance was highly negatively correlated with effluent NH4
+- N (P < 0.001, Fig. 4.4 C) 

concentrations, as was influent virus abundance which was also significantly negatively correlated 

with effluent concentrations of COD (P < 0.001 and P < 0.01 for NH4
+- N and COD respectively, Fig. 

4.4 C). 

4.3.4. Similarity and Synchronicity of CSTR’s (day 62 - 204) 

Given ML total virus, bacterial and AOB abundances and bacterial community profiles were only 

determined from day 62, to allow for acclimatisation, CSTR synchrony and similarity was 

determined from this point forwards. 

4.3.4.1. Abiotic Conditions and Function 

ML and effluent abiotic conditions, based on ANOSIM and Adonis test statistics, were very weakly 

different, thus similar, across all CSTR’s (ANOSIM R = 0.084, P < 0.001 and Adonis R2 = 0.004, P < 

0.001), with no significant differences evident between any CSTR pairs (Table IV.11). Among 

control (ANOSIM R = 0.078, P < 0.001 and Adonis R2 = 0.028, P < 0.001) and among test (ANOSIM 

R = 0.037, P < 0.001 and Adonis R2 = 0.006, P < 0.05) CSTR similarity was also high, as was that 

between control and test CSTR’s respectively (ANOSIM R = 0.060, P < 0.001 and Adonis R2 = 0.008, 

P < 0.001). Correspondingly functional synchrony was evident across all CSTR’s, although 

synchrony was generally higher among control and among test CSTRs (Fig. IV.5 A and Table IV.12, 

CODs 𝑆̅ = 0.63 ± 0.10, 𝑆𝐶
̅̅ ̅ = 0.71 ± 0.06 and 𝑆𝑇

̅̅ ̅ = 0.67 ± 0.06, NH4
+-N 𝑆̅ = 0.67 ± 0.08, 𝑆𝐶

̅̅ ̅ = 0.65 ± 

0.07 and 𝑆𝑇
̅̅ ̅ = 0.73 ± 0.04). 
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Figure 4. 5. Temporal variation in the microbial communities within each CSTR over the 204-day study, structured by CA. (A – F) Control 
1 – 6, (G – L) Test 1 – 6. 
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4.3.4.2. ML Total Abundances  

Synchrony in total abundance was variable across all three communities within the ML (Fig. IV.5 

B, Table IV.13). Viruses, particularly within test CSTR’s, appeared predominantly asynchronous, 

(Fig. IV.5 B, 𝑆̅ = 0.25 ± 0.26, 𝑆𝐶
̅̅ ̅ = 0.31 ± 0.24 and 𝑆𝑇

̅̅ ̅ = 0.16 ± 0.28), though some CSTR pairs, namely 

C4-C5, C4-C6, C4-T3, C6-T2 and C6-T3, did show some degree of synchrony (Table IV.13). Both 

total bacteria and AOB were more synchronous across CSTR pairs (Fig. IV.5 B, Table IV.13), with 

little difference seen between overall synchronicity and that among control and test CSTR’s 

respectively (Fig. IV.4 B, bacteria 𝑆̅ = 0.48 ± 0.17, 𝑆𝐶
̅̅ ̅ = 0.50 ± 0.18 and 𝑆𝑇

̅̅ ̅ = 0.51 ± 0.15, AOB 𝑆̅ = 

0.53 ± 0.10, 𝑆𝐶
̅̅ ̅ = 0.54 ± 0.12 and 𝑆𝑇

̅̅ ̅ = 0.54 ± 0.13). 

4.3.4.3. Bacterial Community Dynamics 

The microbial communities in each CSTR were temporally dynamic and spatially different across 

all CSTR’s (Fig. 4.5, Table IV.14, ANOSIM R = 0.313, P < 0.001 and Adonis R2 = 0.049, P < 0.001), 

although compositions were more similar between (ANOSIM R = 0.173, P < 0.001 and Adonis R2 = 

0.043, P < 0.001) and among control (ANOSIM R = 0.213, P < 0.001 and Adonis R2 = 0.035, P < 

0.001) and test CSTR’s (ANOSIM R = 0.293, P < 0.001 and Adonis R2 = 0.026, P < 0.001) respectively 

than between the majority of CSTR pairs (Table IV.14). Correspondingly temporal bacterial 

community concordance was variable across CSTR’s (Table IV.15), with mean m2 values of 0.40 ± 

0.14, 0.34 ± 0.13 and 0.44 ± 0.13 observed for overall, among controls and among tests 

respectively. Thus temporal concordance was greater in control CSTR’s, although some CSTR pairs, 

regardless of abiotic conditions, showed greater concordance then others (Table IV.15).  

Calculated synchrony coefficients for βBC, βsor-tur and βsor-nes across all CSTR’s further emphasised 

the spatial variability in microbial community shifts (Fig. IV.5 D, Fig. IV.6 and Table IV.16), with all 

three showing a lack of synchrony (βBC 𝑆 ̅= 0.21 ±0.16, βsor-tur 𝑆̅ = 0.09 ± 0.13 and βsor-nes 𝑆̅ = 0.06 ± 

0.12). Although it is evident that shifts in taxa incidence across all, among control and among test 

CSTR’s was caused by both species turnover (mean ratio βsor-tur/ βsor = 0.79, 0.80 and 0.78) and 

nestedness (mean ratio βsor-nes/ βsor = 0.21, 0.20 and 0.22) respectively (Fig. IV.6).  

Diversity across all CSTR’s was also spatiotemporally variable (Fig. IV.7) and lacked synchrony (D1 

𝑆̅ = 0.38 ± 0.16, D2 𝑆̅ = 0.21 ± 0.19, Fig. IV.5 C and Table IV.17), although synchrony among controls 

was greater than among test CSTR’s (D1 𝑆𝐶
̅̅ ̅ = 0.51 ± 0.17, D2 𝑆𝐶

̅̅ ̅ = 0.32 ± 0.16 and D1 𝑆𝑇
̅̅ ̅ = 0.32 ± 

0.14, D2 𝑆𝑇
̅̅ ̅ = 0.25 ± 0.15, Table IV.17). Unsurprisingly D1 and D2 diversity indices, which averaged 

158. 82 ± 62.03 and 71.00 ± 34.58 respectively across all CSTR’s, were found to be significantly 
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different between (P < 0.001, D1 = 173.64 and 144.04 and D2 = 79.38 and 62.65 for controls and 

tests respectively) and among control and test CSTR’s respectively (P < 0.001, Table IV.7 and IV.8). 

4.4. Discussion 

Efforts to unravel the complex mechanisms underpinning total virus abundance dynamics, i.e. 

their relationship with microbial abundance and exogenous factors, have, until now, been met in 

chiefly natural, open systems. We argued in the introduction that engineered systems, where 

viruses could contribute to functional failures with environmental and financial consequences, 

offer an ideal test bed for their elucidation, particularly at the lab-scale. Using high frequency, 

replicated spatiotemporal observations, coupled with statistical inferences, we have 

demonstrated this is indeed the case. Viruses were linked to bacterial community structure, 

bacterial diversity, total bacterial abundance and a number of physically credible and previously 

reported deterministic factors, including ecosystem functions. This is the first finding that such 

interactions appear over time in multiple lab-scale activated sludge reactors and corroborates 

previous findings from a full-scale plant (Chapter 3), lending credence to the ubiquitous nature of 

such relationships. 

Spatiotemporal fluctuations in ML virus and total bacterial abundance were statistically 

concomitant, corroborating previous temporal findings (Chapter 3) and implying coupled virus - 

bacteria dynamics are homogenous across activated sludge systems. Whilst such a finding makes 

intuitive sense, since viruses depend on the infection of host cells to produce progeny, the lack of 

spatiotemporal synchrony in ML virus abundance, particularly when compared to that of their 

hosts, suggests their distribution is only partially explained by host abundance, as recently alluded 

to (Wigington et al., 2016). 

The greater bacterial community concordance, compositional similarity and diversity among the 

controls, coupled with more synchronous viral abundances, implies the structure of host 

assemblages may also play an important role in the development and divergence of viral 

communities. Certainly the association of ML virus abundance with spatiotemporal variations in 

bacterial assemblages and differing OTU’s among control and test CSTR’s supports such inferences. 

As does the corresponding associations found between select deterministic factors (ML pH, ML 

SS, ML chloride and influent cations) and both ML virus abundance and bacterial community 

structure, since fluctuations in such parameters appear to result in concurrent shifts in both host 

and viral communities respectively. Thus as previously reported (Chapter 3) viruses seem 

significantly intertwined in the community composition of activated sludge systems, as would be 
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expected under “Killing the Winner” (KtW, Thingstad, 2000; Winter et al., 2010) and/or fluctuating 

selection dynamics (FSD, Hall et al., 2011; Avrani et al., 2012).  

Through such processes viruses are thought to mediate bacterial competition in a negative density 

dependant manner, resulting in compositional population fluctuations and greater diversity due 

to augmented resource partitioning and/or the prevention of competitive exclusion (Avrani et al., 

2012). The positive association of ML virus abundance with greater taxa abundance variations 

(βBC) and community diversity (D1 and D2 respectively) is thus is in principle agreement with both 

concepts. Moreover their respective negative and positive associations with incidence based taxa 

turnover (βsor-tur) and nestedness (βsor-nes) could be similarly indicative of KtW and/or FSD, given 

both principles can lessen taxa extinction and dictate a more orderly, or selective, temporal 

disaggregation of bacterial assemblages (White and Pickett, 1985; Bloch et al., 2007; Petsch et al., 

2015). Indeed virus-host infection networks are believed to be inherently nested in structure 

(Flores et al., 2011; Jover et al., 2013, 2016; Korytowski and Smith, 2015), which could help explain 

observed associations. Furthermore such findings imply viruses could account for, or contribute 

to, the general lack of observed microbial community concordance. Especially considering the 

stochastic nature of bacteria-phage coevolution, subsequent local adaptation (Paterson et al., 

2010) and the fact their abundances were spatiotemporally asynchronous and statistically 

associated with differing intermittent and transient OTU’s among control and test CSTR’s. 

The association of influent virus abundance with spatiotemporal community shifts, diversity (D1 

and D2 respectively) and ML virus abundance additionally identifies predator dispersal as a 

potential source of system divergence, as observed in less complex systems (Brockhurst et al., 

2007; Morgan et al., 2007; Vogwill et al., 2008). The influx of new viruses increases population 

densities, replication rates and the provision of novel genetic variation, increasing the chance of 

advantageous mutations (Miralles et al., 1999; Morgan et al., 2005, 2007; Ching et al., 2013) that 

provide viruses an evolutionary advantage in their co-evolutionary arms race (Buckling and Rainey, 

2002). Consequent virus (Vos et al., 2009; Gomez and Buckling, 2011; Koskella et al., 2011) and, 

in response, host adaptation (Bolotin et al., 2004; Kunin et al., 2008; Rho et al., 2012) can thus 

give rise to divergent local communities, especially given the stochasticity of dispersal and co-

evolutionary trajectories (Buckling and Rainey, 2002; Paterson et al., 2010). Interestingly 

temperature can also alter the rate and type of coevolution (Duncan et al., 2016; Gorter et al., 

2016) and thus, although speculative, could account for the greater community divergence in test 

CSTR’s, presumably by selecting for qualitatively different resistance and infectivity mechanisms 

at different temperatures (Forde et al., 2008; Lopez Pascua et al., 2012).  



77 
 

Indeed shifts in ML bacterial community structure were statistically with temperature, as reported 

previously in full scale activated sludge systems (Wells et al., 2009; Griffin and Wells, 2017). Whilst 

this was not the case for ML virus abundances deterministic factors, namely ML pH, MLSS, effluent 

nitrate, effluent chloride, influent calcium and HRT, did play a significant role in their proliferation. 

Such associations corroborate previous findings (Chapter 3) and extend them spatially, yet, with 

the exception of ML pH and HRT, spatiotemporally they were significantly similar and thus unlikely 

sources of divergent viral and bacterial communities. Subtle differences in pH and HRT however, 

given both can influence virus proliferation through the regulation of surface charge (Schaldach 

et al., 2006; Pham et al., 2009; Michen and Graule, 2010; Nap et al., 2014) and resource provision 

respectively (Proctor et al., 1993; Middelboe, 2000; Weinbauer, 2004), could certainly account for 

observed virus abundance asynchrony, alone or in combination. Whilst undoubtedly a 

contributing factor it is striking that differences in both were equally observed across all systems, 

yet some degree of viral abundance synchrony, although weak, was evident amongst controls. As 

such observed deterministic triggers may be filtered through, and thus dampened by, bacterial 

hosts, allowing for greater than expected bacterial community and subsequently viral synchrony.  

In contrast to all facets of the microbial assemblages, community function i.e. the removal of COD 

and NH4
+-N, was considerably synchronous across all systems, corroborating previous findings 

that divergent engineered microbial communities can be functionally similar (Kaewpipat and 

Grady, 2002; Beecroft et al., 2012). However, conversely to Brown et al. (Chapter 3) ML virus 

abundance was negatively associated with effluent NH4
+-N concentrations and not significantly 

associated with effluent COD concentrations, whilst influent virus abundance was negatively 

associated with both. It could be argued the positive affect of virus abundance on bacterial 

community diversity here could increase functional redundancy and resource partitioning 

(Shapiro and Kushmaro, 2011), thus increasing functional stability and thereby amplifying removal. 

However the extended HRT of 48 hours here, compared to ~10 hours in Brown et al. (Chapter 3), 

may also mask the true effect of viruses on community function.  

Overall the spatiotemporal associations identified between virus abundance and total bacterial 

abundance, bacterial community composition and deterministic factors corroborate previous 

temporal findings (Chapter 3). Even those beyond the scope of this paper, those variables not 

discussed but contributing to the CCA ordination, add weight to our findings, considering 

significant effects on activated sludge bacterial communities have previously been reported (Wells 

et al., 2009, 2011; Huang et al., 2010; Wang et al., 2012a; Griffin and Wells, 2017). Interestingly 

despite greater sampling frequency the explained variation in virus abundance was far lower than 
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that explained by Brown et al. (Chapter 3). Thus whilst universal deterministic drivers in virus 

abundance clearly exist, i.e. those abiotic parameters identified in both studies, the spatial 

heterogeneity of bacterial communities, even when the utmost care is taken in running replicate 

systems, means virus communities become locally adapted and thus similarly heterogeneous 

spatiotemporally.  Alternatively, despite being the most comprehensive spatiotemporal study of 

virus and microbial dynamics to date, the number of measured exogenous factors was still 

insufficient to capture the true behaviour of the systems. 

In summary viruses appear an active and dynamic component of activated sludge systems. Whilst 

differences in abundance were spatiotemporally apparent, thus synchrony was lacking, clear 

interactions with bacterial community structure were evident, including associations with total 

host abundance, abundant OTU’s, community composition and community-wide diversity metrics. 

As such viruses could have contributed, or subsequently responded, to observed bacterial 

community divergences, thus appear to play a more central role in the dynamics of activated 

sludge systems than hitherto realised. Across all systems virus proliferation was also linked to 

deterministic factors with plausible and previously reported mechanistic drivers, adding credibility 

to our findings but also emphasising the important role they play in virus dynamics in activated 

sludge, and potentially natural, systems. Whilst our results highlight the apparent ubiquitous 

nature of virus-host interactions in activated sludge systems the identification and enumeration 

of active viruses and their hosts, although a challenging prospect, is paramount in achieving a 

greater understanding of such dynamics and the role they play in the microbial ecology of these 

globally important systems. 
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CHAPTER 5 
EVIDENCE OF PREDATOR-PREY DYNAMICS BETWEEN BACTERIOPHAGE AND 

AMMONIA OXIDISING BACTERIA IN AN ENGINEERED MICROBIAL SYSTEM 
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The interactions of bacteria and their viruses (bacteriophage) are virtually ubiquitous within 

microbial communities and lead to population fluctuations in both hosts and virus’s that should, 

in principle, be describable by the Lotka-Volterra equations. Yet such predator-prey dynamics 

have seldom been observed in nature. A modest reworking of the Lotka-Volterra equations 

enabled us to explicitly test for signatures of such dynamics between viruses and ammonia 

oxidising bacteria (AOB) within the mixed liquor of a full-scale activated sludge plant, dynamics 

which were undetectable by simple observation of raw abundance data. Rates of viral induced 

AOB mortality, virus replication and AOB growth were subsequently estimated, with viral 

predation typically killing half the AOB each day. This is the first estimated predation rate of a 

specific functional group in the environment and implies viruses play a more important role in 

regulating bacterial abundance in activated sludge systems than previously thought, as well as 

providing quantitative evidence of their role in the ecology of less abundant functional organisms.  

5.1. Introduction 

Bacteria-phage interactions are ubiquitous in nature and considered central to the ecology, 

evolution and functioning of both natural and engineered microbial ecosystems. Indeed phage are 

thought to mediate bacterial competition in a negative density dependent manner, as described 

by “Killing the Winner” (KtW, Thingstad, 2000; Winter et al., 2010) and/or fluctuating selection 

dynamics (Hall et al., 2011; Avrani et al., 2012), and thus influence the diversity within and among 

bacterial strains, species and communities (e.g. Brockhurst et al., 2004; Harcombe and Bull, 2005; 

Brockhurst et al., 2006). Yet quantitative empirical support for these powerful concepts in natural 

communities, both describable, in principle, by the Lotka-Volterra equations (Volterra, 1926; 

Lotka, 1934), remains elusive (reviewed by Winter et al., 2010; Avrani et al., 2012). 

It has been argued that strain/genotypic antagonistic coevolution dampens (e.g. Middleboe et al., 

2009; Rodriguez-Brito et al., 2010) or alters (see Cortez and Weitz, 2014) typical Lotka-Volterra 

signals, however obtaining a quantitative time series of predator and prey abundances needed to 

observe such dynamics is problematic (see Brum and Sullivan, 2015). Viruses are typically 

enumerated as total numbers and thus distinguishing one “predator” from another is not feasible 

(Brown et al., 2015) without recourse to a plaque assay (e.g. Middleboe et al., 2009; Shapiro et al., 

2010), which has well documented limitations for bacterial and, consequently, viral quantification 

(e.g. Rappé and Giovannoni, 2003). Moreover molecular alternatives are of variable precision and 

accuracy (Baptista et al., 2014), typically targeting a specific conserved gene which may not 

distinguish between bacterial taxa with sufficient resolution. The refinement of KtW host groups 
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from species to strains (Thingstad et al., 2014; 2015) lends weight to these fears and suggests 

predator prey relationships may be even harder to detect than previously thought.  

Nonetheless we sought evidence of Lotka-Volterra dynamics in the mixed liquor of a full-scale 

activated sludge system using weekly total virus and AOB abundance data obtained by flow 

cytometry (Brown et al., 2015(Chapter 2)) and qPCR (Baptista el al., 2014). Whilst there was no 

obvious predator prey relationship between viral numbers and AOB abundance (Fig. 5.1 A and B), 

which typically account for less than 3% of all bacteria in activated sludge systems (Coskuner et 

al., 2005), a modest reworking of the Lotka-Volterra equations enabled us to quantitatively test 

for viral predation and to estimate viral lysis and replication rates respectively. 

5.2. Materials and Methods 

5.2.1. Sample Collection 

Mixed liquor (ML) grab samples were collected from the aeration basin (3600 m3) of a 

conventional nitrifying domestic wastewater (6751 m3 day-1) treatment plant, situated in the 

North East of England, United Kingdom (UK), on a weekly basis for a period of two years from June 

2011 to May 2013 (104 weeks (Chapter 3)). Samples were collected in 50 mL polypropylene 

containers and transported to the lab on ice for immediate processing.  

5.2.2. Flow Cytometry Analysis 

For virus enumeration 1 mL sub-samples of ML were taken, transferred into 2 mL cryovials and 

fixed at a final concentration of 0.5% Glutaraldehyde for 15-30 minutes at 4oC in the dark. Samples 

were then flash frozen in liquid nitrogen and stored at -80oC. After defrosting samples were pre-

treated and analysed in triplicate as described by Brown et al. (2015 (Chapter 2)) using a FACScan 

flow cytometer (Becton Dickinson, USA) equipped with a 15-mW 488-nm air-cooled argon-ion 

laser and a standard filter setup. 

5.2.3. DNA Extraction qPCR 

DNA was extracted from 250 µL of ML. Cell wall disruption was carried out using the FastDNA SPIN 

Kit for soil (MP Biomedicals, USA), thus 244.5 µL of sodium phosphate buffer and 30.5 µL of MT 

buffer was added to samples and the mixture transferred to Lysing Matrix E tubes. Samples were 

then lysed at 6.5 ms-1 for 30 seconds in a FastPrep instrument (MP Biomedicals, USA) and 

centrifuged at 14000 × g for 15 minutes. DNA from 250 µL of the supernatant was then purified 

using a MagNA Pure LC 2.0 (Roche, UK) and the MagNA Pure LC DNA Isolation Kit III.  
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Quantification of AOB was carried out using qPCR and amplification of the ammonia 

monooxygenase (amoA) gene (Baptista et al., 2014). Samples were amplified in triplicate on a 

CFX96 Real-Time PCR Detection System (Bio-Rad, UK) using the primer sets amoA-1F* (Stephen et 

al., 1999) and amoA-2R (Rotthauwe et al., 1997). qPCR reactions contained 3 µL of template DNA 

(sample DNA, standard DNA or molecular grade water (negative control)), 0.5 µL of forward and 

reverse primer (10  ρmoles per µL), 5 µL of SsoFast EvaGreen supermix (Bio-Rad, UK) and 1 µL of 

Molecular-grade water. Reaction conditions were: 1 cycle at 98oC for 3 minutes, followed by 40 

cycles consisting of 98oC for 5 seconds and 56oC for 5 seconds. Purified circular plasmids containing 

the target gene were used as standards and run in triplicate for each qPCR reaction.  Efficiencies 

for all qPCR reactions ranged between 90-110% and had a R2 ≥ 0.99. Gene copy numbers per unit 

volume were converted to cell numbers per unit volume assuming each AOB cell contained 2 

copies of the amoA gene (McTavish et al., 1993; Norton et al., 2002).  

5.2.4. Statistical Analysis 

All statistical analysis was performed in RStudio (v. 1.0.143, R Core Team, 2017) using R version 

3.4.0 (R Core team, 2017). Standard major axis (SMA) regression was undertaken using the 

function lmodel2 in package lmodel2 (v. 1.7-2, Legendre, 2014), with the second difference of 

natural log transformed response variables (∆2 ln(𝑥) and ∆2ln(𝑉)), the rate of change of the rate 

of change (e.g. (𝑥𝑡+1 − 𝑥𝑡) − (𝑥𝑡 −  𝑥𝑡−1)), being regressed on the first difference of unlogged 

explanatory variables (∆𝑉 and ∆𝑥), the rate of change (e.g. 𝑉𝑡 −  𝑉𝑡−1). Note the range of ∆𝑉 and 

∆𝑥 was adjusted by dividing by 109 and 108 respectively. Prior to regression analysis response and 

explanatory variables were checked for outliers, bivariate normality and Pearson correlation using 

the functions aq.plot, roystonTest and cor.test in packages mvoutlier (v. 2.0.8, Filzmoser and 

Gschwandtner, 2017), MVN (v. 4.0.2, Korkmaz et al., 2014) and stats (v. 3.4.0, R Core Team, 2017) 

respectively. Note all outliers, based on an alpha value of 0.05, were removed prior to analysis, 0 

for ∆2ln(𝑥) ~∆𝑉  and 9 for ∆2ln(𝑉) ~ ∆𝑥.  

5.2.5. Theory 

The Lotka-Volterra predator-prey model is given by the equations, 

𝑑𝑥

𝑑𝑡
= 𝜇𝑥 − 𝜑𝑥𝑉,                                                                                                                                      𝐸𝑞. 5.1 

𝑑𝑉

𝑑𝑡
= 𝛿𝑥𝑉 − 𝑚𝑉,                                                                                                                                     𝐸𝑞. 5.2 
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where, in this case, 𝑉 is viruses mL-1, 𝑥 is AOB mL-1, 𝜇 is the AOB growth rate and 𝜑, 𝛿 and 𝑚 are 

the virus lysis, replication and mortality rate  respectively.   

Rearranging Eq. 5.1 and Eq. 5.2 and taking their first derivative by applying the chain rule (see 

Appendix V, Eq. V1 – V6) gives, 

𝑑 ln(𝑥)

𝑑𝑡
= 𝜑 ( 

𝜇

𝜑
− 𝑉) ,                                                                                                                           𝐸𝑞. 5.3 

𝑑 ln(𝑉)

𝑑𝑡
= −𝛿 (

𝑚

𝛿
− 𝑥) .                                                                                                                        𝐸𝑞. 5.4 

Taking the second derivatives gives,  

𝑑2 ln(𝑥)

𝑑𝑡2
= −𝜑

𝑑𝑉

𝑑𝑡
  ,                                                                                                                               𝐸𝑞. 5.5 

𝑑2 ln(𝑉)

𝑑𝑡2
= 𝛿

𝑑𝑥

𝑑𝑡
 .                                                                                                                                   𝐸𝑞. 5.6 

Thus if we have n measurements of 𝑥 and V that are equally spaced in time, 𝑥𝑖 and 𝑉𝑖, then we 

can estimate the first and second derivatives at sampling points using finite difference 

approximations (see Appendix V): (∆2 ln(𝑉))𝑖 ≈
𝑑2 ln(𝑉𝑖)

𝑑𝑡2 ;  (∆𝑉)𝑖 ≈
𝑑(𝑉𝑖)

𝑑𝑡
;  (∆2 ln(𝑥))𝑖 ≈

𝑑2 ln(𝑥𝑖)

𝑑𝑡2 ; (∆𝑥)𝑖 ≈
𝑑(𝑥𝑖)

𝑑𝑡
, 𝑖 = 2 … 𝑛 − 1.  If predator-prey dynamics are observed then (∆2 ln(𝑥))𝑖  

will be negatively, linearly associated with (∆𝑉)𝑖 (Eq. 5.5), (∆2 ln(𝑉))𝑖 will be positively, linearly 

associated with (∆𝑥)𝑖(Eq. 5.6) and the slopes will approximate - 𝜑 and 𝛿 respectively. Performing 

standard major axis (SMA) regression on these variables, which incorporates measurement error, 

allows assessment of these predictions, which, considering criticism of the Lotka-Volterra models 

unrealistic assumptions, would hold true for more complex, and arguably more realistic models 

(Appendix V, section V.1.2).  

5.3. Results and Discussion 

As predicted, a highly significant, negative association was found between ∆2 ln(𝑥) and ∆𝑉, with 

constant terms approximating to 0 (P < 0.01, Table 5.1 and Fig. 5.1 C).  The slope implies 𝜑 = -2.95 

× 10-9 week-1 or -4.21 × 10-10 day-1 and proposes a viral induced AOB mortality rate (𝜑𝑉) of -0.504 

day-1 (Appendix V, section V.1.3, 𝜑𝑉𝑚𝑖𝑛 = -0.134 day-1, 𝜑𝑉𝑚𝑎𝑥  = -1.436 day-1), this is the first 

estimated predation rate of a specific functional group from any natural environment. Accordingly 

viruses kill ~50% of AOB per day, a value consistent with those in marine environments (Noble and 

Fuhrman, 2000), and thus must be considered a major source of bacterial mortality in activated 



85 
 

sludge systems. Moreover 𝜇 was conceivably ~0.6 day-1 (Eq. V10), a value consistent with AOB 

𝜇𝑚𝑎𝑥 values obtained using real wastewaters (0.7 ± 0.4 day-1, Munz et al., 2011). Thus at 𝜑𝑉𝑚𝑎𝑥 

mortality likely exceeds 𝜇𝑚𝑎𝑥 and could contribute to nitrification failures.  

 

Figure 5. 1. Temporal dynamics of ML AOB (A) and Virus (B) abundance from the full scale wastewater treatment plant and 
∆𝟐 𝑙𝑛(𝑥) ~∆𝑉 (C)  ∆𝟐 𝑙𝑛(𝑉) ~ ∆𝑥  (D). Coloured solid and dashed lines (C and D) represent slope estimates and their 95% confidence 
intervals respectively for each SMA regression analysis. Note ∆𝑥 (C) and  ∆𝑉 (D) were rescaled by dividing by 109 and 108 respectively. 

Table 5. 1. SMA regression analysis of differenced abundance data. 

Coefficient Estimate Estimate 95% CI 

(min, max) 

Slope  Slope 95% CI 

(min, max) 

Angle (°) 

∆2 ln(𝑥) ~∆𝑉 a       

     Intercept -0.050 -0.062, -0.040 -2.951 -3.575, -2.436 -71.279 

∆2 ln(𝑉) ~ ∆𝑥 b      

     Intercept 0.003 -0.000, 0.005  -6.338 -7.729, -4.230 -81.034 

an = 100. P-Values: 2-tailed = 0.0067, 1-tailed = 0.0033. R2 = 0.07. Royston's Multivariate Normality Test: P = 0.66. Pearson Correlation 
Test: Estimate = -0.2696, P = 0.0067. bn = 91. P -Values: 2-tailed = 0.0022, 1-tailed = 0.0011. R2 = 0.10. Royston's Multivariate Normality 
Test: P = 0.41. Pearson Correlation Test: Estimate = -0.3171, P = 0.0022. CI = Confidence Intervals.  

The interpretation of δ was more problematic since the association between ∆2 ln(𝑉) and ∆𝑥, 

though significant with constant terms approximating to 0, was negative, thus had “the wrong 

sign” (P < 0.01, Table 5.1 and Fig. 5.1 D). A value for 𝛿 of -6.34 × 10-8 week-1 or -9.05 × 10-9 day-1 

implies virus-AOB encounters cause significant viral loss and, since both terms in Eq. 5.2 are 

negative, that viruses are in permanent decline. As viruses are not in permanent decline this 

implies our simple model is too simple.  Certainly viruses are also produced by other bacteria at a 

rate η (days -1) and are present in influent wastewater at a concentration of 𝑉𝑖𝑛𝑓 mL-1, which is 

washed in at the dilution rate (𝜃 days -1, reciprocal of the hydraulic retention time). Additionally 

the negative value of δ could reflect the fact that viral infection is a two-step process, viruses 

adsorb to and then lyse AOB cells at rate 𝐴 (mL-1 min-1) and 𝜑 respectively, producing progeny 

viruses determined by a burst size (𝛽).  Thus Eq. 5.2 becomes, 
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𝑑𝑉

𝑑𝑡
= 𝜃𝑉𝑖𝑛𝑓 + 𝜂𝑉 + 𝛽𝜑𝑥𝑉 − 𝐴𝑥𝑉 − 𝑚𝑉 .                                                                                        𝐸𝑞. 5.7 

Therefore  

𝛿 = 𝛽𝜑 − 𝐴 ,                                                                                                                                            𝐸𝑞. 5.8 

and 

𝐴 = 𝛽𝜑 − 𝛿 .                                                                                                                                            𝐸𝑞. 5.9  

Thus δ will be negative if 𝐴 is greater than the product of  𝛽 (100, assuming genome sizes of 2.8 

million and 40000 base pairs for AOB and AOB phage respectively (Weitz et al., 2015)) and 𝜑 (-

4.21 × 10-10 day-1). Accordingly we estimate 𝐴 to be 3.3 × 10-8 mL day-1 or 2.29 × 10-11 mL min-1, a 

value well below the theoretical maximum of ~10-7 mL min-1 (Weitz et al., 2015) or values 

measured under laboratory conditions (Ellis and Delbruck, 1939).  This might explain a negative δ 

and is intuitively reasonable since most of the viruses we measure, and assume to be adsorbing 

to AOB, will be incapable of infecting that organism. 

In summary the data and analysis presented implies AOB and a subset of viruses interact in a 

predator-prey type manner within activated sludge systems, with viruses significantly affecting 

AOB net growth. AOB diversity is low in such systems, with one taxon constituting the majority of 

the AOB biomass. Thus viral predation of the most abundant AOB taxon could account for well-

known nitrification instabilities in activated sludge. Moreover such findings lends credence to the 

notion that bacteriophage may play a significant role in shaping the microbial ecology, function 

and functional stability within these globally important systems. We caution that these findings 

are based on statistical associations, of which one had “the wrong sign”, and thus their basis is not 

yet certain. Clearly, deeper mechanistic research is needed to determine the accuracy and details 

of these statistical observations. This endeavour will be strengthened by the ongoing revolution 

in viral metagenomics and single cell analysis (Dang and Sullivan, 2014; Brum and Sullivan, 2015). 
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CHAPTER 6 
A WASTEWATER PERSPECTIVE ON VIRAL AND MICROBIAL ABUNDANCES 

AND VIRUS-MICROBE RATIOS 
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Recent re-examination of virus and bacterial densities in marine systems has highlighted 

substantial variation in their consensus 10:1 ratio and identified abundances actually increase 

non-linearly with each other, i.e. viruses are relatively less abundant at high host densities. Here 

we compile 1044 bacterial and virus abundance estimates from 14 distinct engineered systems 

and corroborate these findings. Yet we do so at host and viral densities up to two orders of 

magnitude greater than previously examined and at high frequency temporal scales. Given these 

findings we argue engineered systems could be ideal environments for exploring the underlying 

mechanisms of this emerging paradigm in viral ecology.  

6.1 Introduction 

In the late 1980’s culture independent methods sparked a transformation in viral ecology (Bergh 

et al., 1989) after elucidating virus densities were orders of magnitude greater in aquatic 

environments than culture based estimates. Subsequently spatiotemporal quantification of virus 

abundance, alongside microbial hosts, became central to efforts to characterise the scope of viral 

influences on ecosystems and their functions (reviewed in Wommack and Coldwell, 2000; 

Weinbauer, 2004). Such studies have yielded great insights into, and underpin, our understanding 

of virus ecology in marine environments. We now understand that bacterial and viral communities 

are active, interconnected and critical components of microbial ecosystem production and 

nutrient recycling (Suttle, 2007; Brussard et al., 2008; Rohwer and Thurber, 2009). 

A consensus has emerged over the past 25 years: viruses are typically an order of magnitude more 

abundant than their microbial hosts, approximately 107 and 106 per mL-1 respectively in marine 

systems (Wommack and Coldwell, 2000; Weinbauer, 2004). Thus, although large variations have 

been observed, the virus to microbe ratio (VMR) is presumed to equal 10 (Wigington et al., 2016), 

implying a linear association between host and virus abundance. Recently however this consensus 

has been re-examined. Using complimentary data and analysis, Knowles et al. (2016) and 

Wigington et al. (2016) found that VMR’s are poorly described by a 10:1, or indeed any fixed, ratio, 

instead they tend to decrease with host abundance.  Although systems with higher microbial 

densities were found to have correspondingly higher viruses in total, per microbe there were 

actually fewer.  

Wigington et al. (2016) propose exogenous factors, host diversity and lysogeny as potential 

reasons for this observed trend and emphasise increased temporal studies would aid in 

understanding its implication. Knowles et al. (2016) go one step further and offer the “Piggyback-

the-Winner” (PtW) hypothesis as a mechanistic explanation, an extension of the commonly 



92 
 

accepted “Killing the Winner” hypothesis (KtW, Thingstad, 2000; Winter et al., 2010), which 

describes virus-host interactions (KtW). They argue, contrary to previous findings (Jiang and Paul, 

1994; Maurice et al., 2010; Payet and Suttle, 2013; Brum et al., 2015b), that temperateness is 

favoured at high host density, thus more microbes, fewer viruses.  

Given the high host (Chapter 3 and 4) and virus (Otawa et al., 2007; Wu and Liu, 2009; Brown et 

al., 2015 (Chapter 2, 3 and 4)) densities in activated sludge we sought evidence of such a trend in 

the influent and mixed liquor of one full- and twelve lab-scale wastewater treatment systems 

using total virus and bacterial abundance data obtained by flow cytometry (Brown et al., 2015 

(Chapter 2)) and qPCR respectively.  

6.2 Materials and Methods 

6.2.1 Sample Collection 

Influent and mixed liquor (ML) grab samples were collected from the aeration basin (3600 m3) of 

a conventional nitrifying domestic wastewater (6751 m3 day-1) treatment plant, situated in the 

North East of England, United Kingdom (UK), on a weekly basis for a period of two years from June 

2011 to May 2013 (104 weeks (Chapter 3)). Similarly mixed liquor (ML) grab samples were 

collected from twelve lab-scale reactors, described in detail elsewhere (Chapter 4), every other 

day for a period of 142 days. In both instances samples were collected in sterile 50 mL 

polypropylene containers and transported/stored on ice/at 4oC until further processing. 

Suspended solids (SS) of all samples was determined according to Standard Methods (APHA, 1989). 

6.2.2 Flow Cytometry Analysis 

For virus enumeration 1 mL sub-samples of influent and ML were taken, transferred into 2 mL 

cryovials and fixed at a final concentration of 0.5% Glutaraldehyde for 15-30 minutes at 4oC in the 

dark. Samples were then flash frozen in liquid nitrogen and stored at -80oC. After defrosting 

samples were pre-treated and analysed in triplicate as described by Brown et al. (2015 (Chapter 

2)) using a FACScan flow cytometer (Becton Dickinson, USA) equipped with a 15-mW 488-nm air-

cooled argon-ion laser and a standard filter setup. 

6.2.3 DNA Extraction qPCR 

DNA was extracted from 250 µL of full-scale ML and from 15 mL of influent and lab-scale ML, the 

latter two being centrifuged at 3392 × g for 15 minutes and the supernatant removed down to a 

working volume of 250 µL. Cell wall disruption was then carried out using the FastDNA SPIN Kit for 

soil (MP Biomedicals, USA), thus 244.5 µL of sodium phosphate buffer and 30.5 µL of MT buffer 
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was added to samples and the mixture transferred to Lysing Matrix E tubes. Samples were then 

lysed at 6.5 ms-1 for 30 seconds in a FastPrep instrument (MP Biomedicals, USA) and centrifuged 

at 14000 × g for 15 minutes. DNA from 250 µL of the supernatant was then purified using a MagNA 

Pure LC 2.0 (Roche, UK) and the MagNA Pure LC DNA Isolation Kit III.  

Quantification of total bacteria was carried out using qPCR and amplification of the 16S-rRNA gene. 

Samples were amplified in triplicate on a CFX96 Real-Time PCR Detection System (Bio-Rad, UK) 

using the primer sets 338F (Muyzer et al., 1993) and 1046R (Huber et al., 2007). qPCR reactions 

contained 3 L of template DNA (sample DNA, standard DNA or molecular grade water (negative 

control)), 0.5 L of forward and reverse primer (10 moles per L), 5 l of SsoFast EvaGreen 

supermix (Bio-Rad, UK) and 1 l of molecular-grade water. Reaction conditions were: 1 cycle at 98 

oC for 3 minutes, followed by 40 cycles consisting of 98 oC for 5 seconds and 60 oC for 5 seconds. 

Purified circular plasmids containing the target gene were used as standards and run in triplicate 

for each qPCR reaction.  Efficiencies for all qPCR reactions ranged between 90-110% and had a R2 

≥ 0.99. Gene copy numbers per unit volume were converted to cell numbers per unit volume using 

accompanying sequence data for the 16S rRNA gene (described in Appendix III). 

6.2.4 Statistical Analysis 

All statistical analysis was performed in RStudio (v. 1.0.143, R Core Team, 2017) using R version 

3.4.0 (R Core team, 2017). Ordinary least squares regression was undertaken using the function 

lm in package stats (v. 3.4.0, R Core Team, 2017), with log10 virus abundance and log10 VMR’s being 

regressed on log10 bacteria abundance for specific, all lab scale and all systems respectively (the 

latter only for log10 VMR’s). Given the log-log nature of the analysis all models represent possible 

power-law fits, whereby the slope (β) and intercept () of fitted lines denote the power-law 

exponent best describing the relationship and the logarithmically transformed pre-factor 

respectively  (1 and 0 in Wigington et al. (2016)).  

6.3 Results and Discussion 

At the full-scale wastewater treatment plant, 95% of bacterial abundances ranged from 6.13 × 107 

to 1.17 × 109 per mL-1 and 4.86 × 105 to 8.09 × 107 per mL-1 in the ML and influent respectively, 

whilst 95% of virus abundances ranged from 5.26 × 108 to 2.33 × 109 per mL-1 of ML and 2.97 × 107 

to 3.41 × 108 per mL-1 of influent (Fig. 6.1 A). Bacteria and virus abundances were also high in the 

lab-scale systems, with 95% of counts ranging from 3.21 × 105 to 9.98 × 107 per mL-1 and 2.65 × 

107 to 2.56 × 108 per mL-1 respectively (Fig. 6.1 A).  Thus host and virus concentrations were 

generally 10 to 100 times higher than those examined by both Wigington et al. (2016) and Knowles 
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et al. (2016) and, for comparison, 10 to 1000 times higher than those found in marine and 

freshwater sediments (Table VI.1, Danovaro et al., 2008a, b).  

 

Figure 6. 1. Variation in virus and bacterial abundance (A) and VMR’s (B). Solid and dashed lines (B) denote median and central 95% 
range values respectively for each system. 

Median VMR’s of 3.59, 9.83 and 9.49 were observed in full-scale ML and influent and lab-scale ML 

respectively (all twelve systems), thus, like Wigington et al. (2016), the consensus 10:1 ratio does 

accurately represent the median VMR in wastewater environments with lower host and virus 

densities (Fig. 6.1 B). However substantial variation in VMR’s was evident at both full- and lab-

scale (Fig. 6.1 B and 6.2 B), with 95% of this variation lying between 0.88 and 22.65, 0.82 and 

328.48 and 0.85 and 232.01 in full-scale ML and influent, and lab-scale ML (all twelve systems) 

respectively. Accordingly at high host densities wastewater VMR’s appear more akin to those in 

marine sediments (Danovaro et al., 2008b), whilst at low host densities they transition to those 

observed in the water column (Wigington et al., 2016; Knowles et al., 2016; Lara et al., 2017).  

Virus abundance was significantly, positively associated with bacterial abundance in only 6 of 14 

cases when specific systems were individually analysed (Fig. 6.2 A, VI.1 and Table VI.2), with a 

median β of 0.05 observed. When all lab scale or all systems were considered, both of which 

resulted in significant, positive relationships, overall β values of 0.08 and 0.31 were observed 

respectively, thus slopes excluded, and were entirely < 1, in all instances (Fig. 6.2 A and Table VI.2). 

Such a finding, coupled with the inherent significant decline in VMR’s with increasing host density 

(Fig. 6.2 B and Table VI.3), emphasises that virus abundance increases disproportionately with 

bacterial abundance in wastewater environments. It also corroborates the findings of Wigington 
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et al. (2016) and Knowles et al. (2016) but additionally confirms the continuation of this 

relationship at high host and virus densities and across functionally relevant temporal scales. 

The findings here are thus in agreement with PtW. Under such dynamics high host densities 

suppress lytic infection and density-dependent growth due to an increase in the prevalence of 

lysogeny, reflecting the benefits of lysogeny to hosts (Paul, 2008; Bondy-Denomy et al., 2016; van 

Houte et al., 2016; Dedrick et al., 2017) but contradicting the consensus that lysogeny is inversely 

related to host density (Jiang and Paul, 1994; Maurice et al., 2010; Payet and Suttle, 2013; Brum 

et al., 2015b). Indeed the hypothesis has been refuted (Weitz et al., 2017) and defended (Knowles 

and Rohwer, 2017) since its proposition and additional, inconclusive, evidence sought (Knowles et 

al., 2017). Yet given peak marine VMR’s are evident at ~106 bacteria mL-1, as here (Fig. 6.2 B), and 

host densities rarely breach 108 per mL (Wigington et al., 2016; Knowles et al., 2016; Lara et al., 

2017) it could be argued marine host densities, and similarly those in freshwater, sediments and 

soils (Knowles et al., 2017), are typically insufficient to trigger community wide lysogeny (Knowles 

et al., 2017), thus lytic infection predominates. In contrast, considering host densities are typically 

108 – 109 per mL and can breach 1010 per mL (data not shown), lysogeny may prevail more 

frequently in an engineered setting. 

 

Figure 6. 2. (A) Variation in virus and bacterial abundance and VMR’s (B) as a function of bacterial abundance Solid coloured lines (A) 
denote best fit linear regression for respective systems, black solid lines (A and B) denote best fit linear regression for all systems and 
dashed light blue line (A) depicts a 10:1 linear relationship. ML = Mixed Liquor. 

In light of inconclusive evidence for PtW, Knowles et al. (2017) go on to suggest environmental 

conditions may drive lysogeny, whilst Wigington et al. (2016) similarly promote such factors as a 

potential source of variation in VMR’s. Indeed prophage induction through physico-chemical 

stress has previously be shown in activated sludge systems (Choi et al., 2010; Motlagh et al., 2015). 
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Moreover, when environmental and operational variables are utilised to extend the simple 

models used here, a much larger amount of variation in virus and bacterial abundance is explained, 

whilst, in general, their association with each other also increases (Chapter 3 and 4). Interestingly 

some variables, namely concentrations of phosphate, sulphate, sulphur and fluoride, influence 

the abundance of both communities (Chapter 3). Thus variation in abundances could 

systematically be driven by such factors individually or mutually, influencing the inferred 

relationship between virus and bacterial abundances, VMR’s and the lytic-lysogenic switch. 

In summary the data and analysis presented highlights viruses in wastewater environments are 

relatively less abundant at high host abundance, thus VMR’s decrease with increasing host density. 

Such findings corroborate those of Wigington et al. (2016) and Knowles et al. (2016) but also 

emphasise that this association continues temporally and at greater host densities than previously 

examined. Whilst no attempt is made to elucidate the mechanism behind such a dynamic the high 

host density and evidence of lysogeny within engineered systems, coupled with their highly 

controlled and monitored environments, make them fertile testing grounds for exploring what 

now appears to be the nascent area of viral ecology. 
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7.1 Introduction 

Viruses play an active role in the ecology of natural environments, influencing the composition, 

diversity and function (Rodriguez-Valera et al., 2009; Winter et al., 2010; Breitbart, 2012; Liu et 

al., 2015) of bacterial populations through predation (Wommack and Colwell, 2000), nutrient 

regeneration (Middelboe and Jørgensen, 2006; Haaber and Middleboe, 2009; Shelford et al., 

2012) and horizontal gene transfer (Lindell et al., 2004; Sullivan et al., 2006). Recent examination 

of their dynamics in biological wastewater treatment systems, where viruses are known to be 

highly abundant (Otawa et al., 2007; Wu and Liu, 2009; Brown et al., 2015 (Chapter 2)), would 

suggest their influence is analogous, with viruses being implicated in host abundance fluctuations 

and functional instability at both the total abundance (Barr et al., 2010; Motlagh et al., 2015, 

Chapter 3, 4 and 5) and strain level (Lee et al., 2007; Shapiro et al., 2010; Zhang et al., 2017) 

respectively.  

Despite the emerging importance of viruses in the dynamics of such systems very little is known 

about their diversity and function, or how this changes through a typical wastewater treatment 

stream. Based on genome size viral communities have been shown to vary between different 

stages of a treatment process (Park et al., 2007; Wu and Liu, 2009), between different systems 

and temporally within the same system (Otawa et al., 2007), whilst more contemporary 

metagenomic approaches have identified highly novel viromes in activated sludge (Parsley et al., 

2010b; Tamaki et al., 2012) and anaerobic digesters (Tamaki et al., 2012; Calusinska et al., 2016) 

respectively. Only Tamaki et al. (2012) simultaneously characterised influent and effluent viromes 

and identified over 82% of viral genotypes are shared amongst the different treatment stages, 

although the relative abundance of known viruses did fluctuate. No study to date however has 

assessed the presence and diversity of temperate viruses in engineered biological systems.  

Viruses can either be classified as lytic or temperate. Upon host infection lytic viruses rapidly 

replicate culminating in cell lysis, whilst their temperate counterparts enter a symbiosis with host 

cells, forming a lysogen, and lay dormant as a prophage within host chromosomes until induced, 

triggering lytic replication and cell lysis. Our understanding of what triggers this lysogenic-lytic 

switch is, however, poor (Knowles et al., 2017). Although recent re-examination of virus and host 

abundances in marine systems (Wigington et al., 2016; Knowles et al., 2016), where viruses were 

found to be relatively less abundant at high host densities, has led to the proposition that 

temperateness, contrary to previous findings (Jiang and Paul, 1994; Maurice et al., 2010; Payet 

and Suttle, 2013; Brum et al., 2015b), is favoured at high host density, the so called “Piggyback-

the-Winner” (PtW) hypothesis (Knowles et al., 2016). As engineered biological systems harbour 
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high bacterial numbers (Chapter 3 and 4) and viruses are relatively less abundant at high host 

densities (Chapter 6) temperate viruses could predominate, particularly considering physico-

chemical prophage induction has previously been observed (Choi et al., 2010; Motlagh et al., 

2015). 

Consequently using a metagenomic approach we characterised and compared the phylogenetic 

and functional profiles of free (influent, mixed liquor and effluent) and temperate (mixed liquor 

only) DNA viral communities throughout the treatment stream of an activated sludge plant, the 

most frequently used and important form of biological wastewater treatment (Seviour et al., 

2010). Given previous findings we hypothesised ML and effluent viral communities would differ 

substantially from those in the influent, giving further indication that viruses interact with, thus 

have a role in the dynamics of, bacterial hosts and thus activated sludge system performance. 

Moreover, assuming PtW to be true, we theorised free and temperate ML viral communities 

would vary in their composition and function. 

7.2 Materials and Methods 

7.2.1 Sample Collection 

Primary settled sewage (influent), mixed liquor (ML) and effluent grab samples were collected 

from a conventional nitrifying domestic wastewater (6751 m3 day-1) treatment plant, situated at 

Tudhoe Mill (~22,500 people), Durham, United Kingdom, on the 1st June, 2016. Samples were 

collected in 50 mL polypropylene containers and transported to the lab on ice for immediate 

processing. 

7.2.2 Sample Processing  

To dislodge viruses and promote floc disaggregation the ionic dispersant sodium pyrophosphate 

(SP, Sigma, UK) was added to ML at a final concentration of 10mM (Brown et al., 2015 (Chapter 

2)) and then incubated in the dark for 15 minutes (200 rpm, 37oC). ML was subsequently 

centrifuged at 3392 × g for 5 minutes and the supernatant passed through a 0.2 µM sterile syringe 

filter, this was made up to a working volume of 2 mL using autoclaved, 0.02 µM filter-sterilised 

distilled water (ML free viruses). Concurrent samples of influent and effluent were prepared as 

described for ML, excluding SP addition, incubation and centrifugation (influent and effluent free 

viruses). 
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7.2.3 Prophage Induction 

The ML pellet was re-suspended in 2 mL of autoclaved, 0.02 µM filter-sterilised distilled water and 

broken up through continued pipetting. Prophages were then chemically induced using 

Norfloxacin at a concentration of 1 µg mL-1 (Sigma, UK) for 1 hour (200 rpm, 37oC, Tariq et al., 

2015). Subsequently viral lysates were centrifuged at 3392 × g for 5 minutes and the supernatant 

passed through a 0.2 µM sterile syringe filter, this was then made up to a working volume as in 

7.2.2 (ML temperate viruses).  

7.2.4 Molecular Methods 

7.2.4.1 Viral DNA Isolation  

Viral DNA was isolated following the protocol of Tariq et al. (2015). Briefly bacterial chromosomal 

DNA in each sample was attenuated using 2 µL of TURBO DNAse and 2 µL of RNAse Cocktail (Life 

Technologies Ltd, UK) respectively, prior to incubation at 37oC for 30 minutes and then heat 

inactivation at 65oC for 15 minutes with 0.5M EDTA (Sigma, UK). Viral DNA was then purified 

according to the manufacturer’s instructions using a NORGEN Phage DNA Isolation Kit (Geneflow 

Ltd, UK), inclusive of the optional addition of proteinase K (Sigma, UK). Viral DNA was checked for 

bacterial contamination, of which there was little, using 2% agarose gels following PCR and 

amplification of the 16S-rRNA gene using primer sets 338F (Muyzer et al., 1993) and 1046R (Huber 

et al., 2007). Finally viral DNA was quantified using a Qubit quantitation assay (Life Technologies 

Ltd, UK) to ensure samples contained enough DNA for sequencing. 

7.2.4.2 Illumina Sequencing 

The Illumina Nextera XT (Illumina, UK) library preparation kit was used to prepare and multiplex 

isolated viral DNA for next generation sequencing on an Ilumina MiSeq at the NU-OMICS facility, 

Northumbria University, UK. A 2 × 250 cycle V2 kit was used for loading and running the DNA 

samples, which were diluted to 0.2 ng μL-1 prior to normalization and pooling. Paired end 

sequencing reads where provided as FASTQ files and subject to downstream analysis.  

7.2.5 Bioinformatics 

7.2.5.1 Virome taxonomic and functional profiling 

Raw reads were initially assigned taxonomically and functionally  by comparison with the NCBI 

nucleotide (nt) and SEED databases using Kraken (default settings, Wood and Salzberg, 2014) and 

MG-RAST (default settings, Keegan et al., 2016) respectively. 
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7.2.5.2 Sequence Assembly 

Raw reads were filtered for sequences matching the Nextera XT adapters and then quality 

trimmed using Trimmomatic (v.0.36, Bolger et al., 2014), with a quality sliding window of 

minimum thread score of 25, across 4 consecutive bases, and a minimum read length of 150 bp. 

Individual viromes were then assembled using SPAdes (v.3.9.1, Bankevich et al., 2012), specifying 

the “--meta” flag to indicate metagenomic assemblies. Assembled contigs were then screened for 

predicted genes using PROKKA (v.1.12, default settings, Seemann, 2014) and subsequently 

taxonomically assigned using BLASTP (E-value ≤ 10-10, 50% similarity cut-off value) against the NCBI 

non-redundant (nr) database.  

7.2.5.3 Mining Assemblies for Viral-like Genomes 

Per-sample assembly graphs were examined in Bandage (Wick et al., 2015) providing an initial 

assessment of the quality of assembled genomes. A novel approach was then utilised to enrich 

virus-like contigs in each viromes assemblies (see supplementary methods for rationale behind 

this approach (Appendix VII)). Previously obtained putative proteins were screened for likely virus-

specific homologies using HMMER (v. 3.1b2, http://hmmer.org/) ) by comparison with  Pfam (v. 

31) HMM database, which was filtered to only include entries containing one or more of the 

following descriptions: “integrase”, “excisonase”, “phage”, ”virus”, “viral” and “capsid”. Proteins 

matching those in the filtered database were then reported and the source contig and subsequent 

assembly graph node identified. All assembly graphs were then parsed and nodes identified as 

viral in origin, and all connected nodes, extracted, enabling all viral associated contigs to be 

amalgamated into collections of individual virus sub-graphs (Fig. VII. 1 B, thought to be genome 

fragments of specific and/or closely related viruses). 

Mapping of raw reads onto all individual virus sub-graph sequences enabled the recovery of 

“virus only” reads, which were subsequently taxonomically and functionally assigned by 

comparison with the SEED nr database using MG-RAST (Keegan et al., 2016).  

7.2.5.4 Preliminary Comparisons of Wastewater Viromes  

To determine the similarity of all wastewater viromes, a reciprocal BLAST approach was employed. 

All genes with 100% match across multiple viromes were considered to be equivalent, the relative 

abundance of these genes was then determined per virome using raw reads mapped to individual 

viral sub-graphs. Using these relative abundances the Bray-Curtis (βBC) dissimilarity coefficient was 

calculated for all possible pairs of samples (beta.pair.abund, “betapart” v.1.4-1, Baselga et al., 

2017), this was also performed on functionally assigned “viral-only” reads. All statistical analysis 

http://hmmer.org/
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was undertaken in RStudio (v. 1.0.143, R Core Team, 2017) using R version 3.4.0 (R Core Team, 

2017). 

7.3 Results and Discussion 

Due to time constraints the presented results are very preliminary, further work will be needed to 

answer the hypotheses stated in the introduction (discussed in section 7.4 and Chapter 9). 

7.3.1 General Characteristics of the Wastewater Viromes 

Across the 4 metagenomic libraries ~ 9 million raw paired-end reads (~ 5 million quality trimmed 

reads) were generated, ranging from 1.6 – 2.9 (0.8 – 1.8) million depending on a samples origin 

(Table VII.1). Thus despite low sample volumes (2 mL), which negated the need for concentration 

procedures and therefore reduced associated bias (John et al., 2011; Hurwitz et al., 2013), libraries 

were comparable to, and tenfold greater than, those garnered from anaerobic digesters (50 mL, 

tangential flow filtration, ultracentrifugation, Nextera XT, Ilumina MiSeq (Calusinska et al., 2016)) 

and a wastewater treatment stream (2 – 10 L, tangential flow filtration, caesium chloride gradient 

and ultracentrifugation, shotgun 454  (Tamaki et al., 2012)) respectively. Of the raw reads on 

average > 90% could not be taxonomically assigned using the NCBI nt database (Table 7.1), with < 

1% being assigned to known viruses. Indeed the majority of characterised sequences were 

assigned to bacteria (Table 7.1), as reported previously in engineered (Tamaki et al., 2012; 

Calusinska et al., 2016) and natural systems (e.g. Angly et al., 2006) respectively. 

7.3.2 Phylogenetic and Functional Profiles of Nucleotide Sequences 

Taxonomic analysis of assigned viral sequences were classified into 18 – 33 viral families 

depending on a samples origin and processing (Table VII.2). Double-stranded DNA (dsDNA) viruses 

dominated all wastewater viromes (Table VII.2), with tailed phages of the order Caudovirales 

constituting 71.6% of all identified free viruses and thus corroborating previous findings in 

engineered systems (Parsley et al., 2010b; Cantalupo et al., 2011; Tamaki et al., 2012; Calusinska 

et al., 2016). Indeed Caudovirales represent over 95% of all known dsDNA viruses (Ackermann and 

Prangishvili, 2012). Within this order the most prevalent family across free viromes was 

Myoviridae followed by Siphoviridae and Podoviridae respectively, although the relative 

abundance of these three families did change markedly in the differing wastewater viromes (Table 

7.1), as observed previously (Tamaki et al., 2012). In contrast the temperate ML virome was 

dominated by unclassified dsDNA viruses (Table 7.1) of which all belonged to genus Pandoravirus, 

giant viruses known to predate Eukaryotes. Other dominant dsDNA viral families across all viromes 

were Polydnaviridae, Phycodnaviridae and Mimiviridae (Table 7.1), all of which infect Eukarya 
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respectively. Indeed 31 of the 37 identified viral family’s had eukaryotic hosts, consisting of 19 

dsDNA, 3 ssDNA and 9 ssRNA viruses respectively (Table VII.1). 

Across all wastewater viromes 5784 “known” viral species were identified from assigned viral 

sequences, yet only 42, of which 37 were bacteriophages, were present in all viromes (Table VII.3). 

The most abundant phage species across all free viromes was Aeromonas phage vB_AsaM-56 

(Table VII.4), given its host is synonymous with aquatic environments, particularly in summer, this 

is perhaps to be expected (Janda et al., 2010). Yet its abundance, along with that of Enterobacteria 

phage T4 and an unclassified Phix174 microvirus, decreased substantially throughout the 

treatment stream, thus implying respective hosts are inactive within ML (Table VII.4). In contrast 

Pseudomonas virus PaMx74, Pseudomonas virus Yua and Burkholderia virus Bcep22 more than 

doubled in the ML and effluent, corroborating previous findings (Tamaki et al., 2012) and agreeing 

with the presence of arguably active  hosts in the ML (Wang et al., 2012b; Saunders et al., 2015; 

Chapter 3 (data not shown)). Interestingly the ML temperate virome was dominated by Eukarya 

infecting viral species (Table VII.4), although this was likely skewed by the amount of assigned viral 

sequences classified as unknown dsDNA viruses (Table 7.1). 

Table 7.  1. Summary of metagenomic libraries and the composition of known wastewater viromes determined by similarity to 
known nucleotide sequences at the family level. 

 Wastewater Viromes 

 Inf Free ML Free ML Temp Eff Free 

Functional Assignment     
Unknown (%) 48.35 44.56 57.93 36.99 

Known (%) 51.42 55.33 41.69 63.00 

Phylogenetic Assignment     
Unknown (%) 90 94 94 99 

Known (%) 10 6.0 6.0 1.0 

Biological Classification     

Virus (%) 0.3 0.1 1.0 0.09 

Virus Classification     

Caudovirales (Siphoviridae) 18.83 37.14 1.59 47.83 

Caudovirales (Myoviridae) 54.17 27.55 1.88 24.60 

Caudovirales (Podoviridae) 4.73 5.56 2.29 12.24 

Unclassified Caudovirales 0.02 0.12 0.01 0.12 

Phycodnaviridae 0.14 0.97 2.15 0.55 

Polydnaviridae 0.17 3.09 14.48 0.20 

Mimiviridae 0.19 0.28 0.26 0.16 

Unclassified dsDNA viruses 0.00 0.71 57.34 0.73 

Other* 21.76 24.56 20.01 13.58 

Bacteria (%) 9.0 5.0 4.9 0.9 

Archaea (%) 0.4 0.4 0.1 0.01 

Eukarya (%) 0.0 0.0 0.0 0.0 

Phylogenetic assignment of nucleotide sequences was determined by Kraken (Wood and Salzberg, 2014) using the NCBI NT database. 
Inf = influent, Eff = effluent, Temp = temperate viruses. *Includes ssDNA, ssRNA and unclassified viruses.  

In contrast to phylogenetic assignment functionality was assigned to > 50% of raw sequences 

across all wastewater viromes (Table 7.1) using a subsystems approach (Overbeek et al., 2005). 

Yet on average < 6% of annotated proteins fell into the category “phages, prophages, transposable 

elements, plasmids” (Fig. 7.1 A and Table VII.5), with the largest proportion found in the influent 
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virome. Other abundant categories in this virome were “clustering-based subsystems” (unknown 

function) “carbohydrates” and “amino acids and derivatives”, whilst abundant categories in the 

other three viromes included “motility and chemotaxis”, “sulphur metabolism” and “cell wall and 

capsule” (Fig. 7.1 A and Table VII.5). Thus subtle differences in each viromes functional, and indeed 

phylogenetic, profiles were apparent. 

 

Figure 7.  1. Functional profiles of each wastewater virome determined from raw (A) and virus-only (B) nucleotide sequences. 

7.3.3 Phylogenetic Profiles of Assembled Protein Sequences 

Individual assemblies of trimmed reads for each wastewater virome yielded > 45000 contigs and, 

following extraction of opening reading frames (ORF’s), identification of > 450000 putative genes, 

of which by far the greatest number were assembled and extracted from reads and contigs in the 

effluent free virome (Table VII.1). Taxonomic analysis of these protein sequences identified 11 

viral families across all wastewater viromes (Table VII.6). Order Caudovirales again dominated and 

constituted 69% of all identified viruses (Table 7.2). Within this order Myoviridae and Siphoviridae 

were the most abundant depending on a samples origin, followed by Podoviridae respectively. 

When compared to abundances garnered from nucleotide sequences subtle differences in each 

family’s relative contribution was apparent in the free viromes, yet in the temperate ML virome, 

particularly for Myoviridae, their contributions increased greatly (Table 7.1 and 7.2). Other 

classified viral families were all nucleocytoplasmic large DNA viruses (NCLDV) from the proposed 

order Megavirales (Colson et al., 2013) and included Phycodnaviridae, Mimiviridae and 

Marseilleviridae (Table VII.6). Notably the giant viruses Klosneuvirus, Indivirus, Catovirus and 
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Hokovirus from Mimiviridae’s subfamily Klosneuvirinae, originally discovered in ML metagenomic 

data (Schulz et al., 2017), were identified in ML free and temp and effluent free viromes 

respectively. Across all viromes 25% of protein sequences identified as viral in origin could not be 

classified to existing viral orders or families. 

7.3.4 Mined Viral-like Genomes 

From the > 450000 identified protein sequences > 35000 were identified as homologous viral 

proteins across all wastewater viromes, the vast majority of which were present in the effluent 

free virome (Table VII.I). In total this enabled 284 (> 20k bp) individual virus sub-graphs to be 

extracted, putatively representing fragments of (249), and complete (35), viral genomes 

respectively (Table VII.1). Subsequent functional assignment of garnered “virus-only” reads 

highlighted that the majority were known (> 75%) and, as expected, fell into the category “phages, 

prophages, transposable elements, plasmids” across all viromes (> 68%, Fig. 7.1 B and Table VII.1). 

Taxonomic assignment was less successful, classifying < 5% of “virus-only” reads from all viromes 

as known viruses. Thus whilst the innovative approach described appears to extract viral-like 

genomes successfully the majority are uncharacterised in extant databases, highlighting, as 

alluded to previously (Parsley et al., 2010b; Cantalupo et al., 2011; Tamaki et al., 2012; Calusinska 

et al., 2016), the novel diversity in  wastewater viromes. 

Table 7.  2. Summary of the composition of wastewater viromes determined by similarity to known protein sequences at the family 
level. 

 Wastewater Virome 

 Inf Free ML Free ML Temp Eff Free 

Phylogenetic assignment     
Unknown (%) 90.7 91.5 92.4 92.2 
Known (%) 9.3 8.5 7.6 7.8 

Biological Classification     

Virus (%) 22 14 40 17 

Virus Classification     

Caudovirales (Siphoviridae) 36.97 34.52 7.28 20.19 

Caudovirales (Myoviridae) 26.26 14.17 55.93 39.08 

Caudovirales (Podoviridae) 14.21 13.76 3.26 8.85 

Unclassified Caudovirales 0.00 0.00 0.00 0.00 

Phycodnaviridae 5.30 7.47 1.23 1.56 

Mimiviridae 0.00 0.18 0.00 0.19 

Unclassified dsDNA viruses 0.00 0.00 0.00 0.00 

Other 17.25 29.91 32.29 30.13 

Bacteria (%) 77 85 59 83 

Archaea (%) 0.2 0.6 1 0.6 

Eukarya (%) 0.1 0.5 0.01 0.3 

Phylogenetic assignment of protein sequences was determined using BLASTP against the NCBI nr database. Inf = influent, Eff = effluent, 
Temp = temperate viruses.  

7.3.5 Comparison of Wastewater Viromes 

βBC coefficients generated for the relative abundance of genes across viromes indicated that ML 

and effluent free viromes were most similar, which was also apparent when functionally assigned 
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“viral-only” reads were considered (Table VII. 8). Influent free and ML temp were the next most 

similar in both instances, whilst both of these viromes were evidently dissimilar to both the ML 

and effluent free viromes respectively. 

7.4 Preliminary Conclusions and Recommendations  

Given the incomplete analysis presented drawing any valid conclusions is problematic. However 

we have shown that sufficient reads to assemble viral metagenomic libraries can be garnered from 

only 2 mL of wastewater, precluding the need for concentration procedures which can introduce 

bias. Across all wastewater viromes, whether determined from raw reads or predicted protein 

sequences, dsDNA viruses of the order Caudovirales were found to be dominant, with Myoviridae, 

Siphoviridae and Podoviridae being the most abundant families. The relative abundances of these 

families, as well as known viral genera and species, was found to change markedly throughout the 

wastewater treatment stream, as well as between free and temperate viromes respectively. Yet, 

given that < 10% of raw and/or predicted protein sequences could be taxonomically assigned, 

such conclusions should be taken with caution. Equally whilst βBC coefficients identified clear 

similarities and differences between wastewater viromes greater predicted genes and “viral-only” 

sequences were found in the effluent and ML free viromes, thus likely biasing results. Although 

this could be indicative of greater and different viruses in these two viromes, as indicated by 

abundances (Chapter 3). 

Accordingly to fully assess the phylogenetic and functional viral diversity throughout a wastewater 

treatment stream, and how it changes, assessment of the uncharacterised reads, that is > 90% of 

those generated, is required. The novel approach adopted here, which seemingly was able to 

identify and extract 284 novel viral-like genomes, offers promise in this regard, yet requires 

refinement (discussed in Chapter 9). In hindsight greater characterisation of these reads could 

have been achieved through co-assembly, wherein reads from all samples are combined and 

assembled simultaneously. Such an approach would likely increase our ability to extract individual 

virus sub-graphs, thus identify more novel viral-like genomes. Moreover the relative abundance 

of these viral-like genomes in each sample could be obtained, thus whilst they would remain 

uncharacterised their dynamics throughout a treatment stream could be described. Estimations 

of  and β diversity, using CatchAll (Allen et al., 2013) for example, would also be possible. 

Undoubtedly such analysis would thus improve upon the initial characterisation of wastewater 

viruses presented here.   
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CHAPTER 8 
GENERAL DISCUSSION AND CONCLUDING REMARKS 
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8.1 Rationale 

Climate change, population growth and increasingly strict environmental regulation means the 

global water industry is currently facing an unprecedented coincidence of challenges (Palmer, 

2010). Better microbial ecology could significantly contribute, since explicitly engineering and 

maintaining efficient and functionally stable microbial communities would allow existing assets to 

be optimised and their robustness improved. Indeed contemporary wastewater microbiology has 

elucidated both niche and neutral components as factors in microbial community shifts and 

functional failures in wastewater treatment bioreactors, however both mechanisms inadequately 

explain all of such events. Given its role in natural systems viral infection could be another 

important factor, yet viruses have seldom been monitored in engineered systems. Here we 

attempted to address this lacuna, particularly within activated sludge systems.  

8.2 Synopsis of results 

Culture independent methods sparked a transformation in viral ecology in the late 1980s (Bergh 

et al., 1989) and 1990’s (Hara et al., 1991; Marie et al., 1999) after revealing virus densities in 

aquatic environments were orders of magnitude greater than culture based estimates. 

Subsequently their quantification, alongside microbial cells, became central in efforts to 

characterise the scope of viral influences on ecosystems and their functions (reviewed in 

Wommack and Coldwell, 2000; Weinbauer, 2004). Contrary to natural systems however such 

methods found limited application in an engineered setting: EFM being used spatially to compare 

different activated sludge plants (Wu and Liu, 2009) or across very modest temporal scales (Otawa 

et al., 2007). Thus to facilitate our endeavours an FCM protocol, the method of choice in marine 

systems (Brussaard et al., 2010), was initially developed, optimised and validated, allowing rapid 

(relative to other methods), accurate and highly reproducible quantification of total free viruses 

in activated sludge samples (Chapter 2). Using the FCM protocol viruses were found to be highly 

abundant across 25 activated sludge plants, with concentrations ranging from 0.59 - 5.14 × 109 

viruses mL-1 corroborating previous findings (Otawa et al., 2007; Wu and Liu, 2009) and 

highlighting virus abundance in activated sludge is amongst the highest of all systems studied to 

date (Wommack and Coldwell, 2000; Weinbauer, 2004).  

The optimised protocol was subsequently utilised to assess virus abundance temporally (Chapter 

3) and spatiotemporally (Chapter 4) in full- and replicate lab-scale activated sludge systems 

respectively, the first two comprehensive studies of virus abundance dynamics in activated sludge 

systems. Whilst principally mimicking studies in marine (e.g. Jiang and Paul, 1994; Weinbauer et 
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al., 1995; Bratbak et al., 1996; Li and Dickie, 2001) and freshwater (e.g. Hennes and Simon, 1995; 

Hofer and Sommaruga, 2001; Bettarel et al., 2004; Jacquet et al., 2005) environments the two 

studies were undertaken at functionally relevant   temporal scales and  incorporated a suite of 

time varying exogenous factors, answering recent calls in viral ecology (Breitbart, 2012; Brum and 

Sullivan, 2015; Wigington et al., 2016).  

At the full-scale (Chapter 3) viruses in the mixed liquor (ML) were shown to be both abundant and 

temporally dynamic, a finding corroborated and extended spatially at the lab-scale (Chapter 3). 

Thus viruses appear both temporally and spatially dynamic, yet ever present across activated 

sludge systems. Accordingly, given viruses are obligate parasites, ML virus abundance was 

positively associated with total host (bacterial) abundance at both full- and lab-scales, i.e. 

temporally and spatiotemporally respectively. Such findings are a first in an engineered setting 

and imply coupled virus-bacteria dynamics are homogenous across activated sludge systems, yet 

without the measurement of accompanying exogenous factors they may have remained 

undetected (Chapter 6). Indeed the relative decline in virus abundance with increasing host 

density (Chapter 6) across wastewater systems corroborates recent re-examination of marine 

datasets (Wigington et al., 2016; Knowles et al., 2016) and may imply lysogeny is the dominant 

infection strategy in activated sludge systems, although clarification through further work is 

needed (see Chapter 9).  

ML virus abundance, at both full- and lab-scales respectively, was also linked spatiotemporally to 

microbial community structure, another novel finding which implies viruses may play a significant 

role in shaping, or are influenced by, activated sludge bacterial dynamics, as predicted by KtW 

and/or FSD. Indeed numerous lines of evidence exist for the presence of these powerful concepts 

in activated sludge systems. At the full-scale the corresponding associations found between 

resource availability (NH4
+- N, phosphate and sulphur concentrations) and both ML virus 

abundance and bacterial community structure is in principle agreement (Winter et al., 2010; 

Avrani et al., 2012; Pascua et al., 2014), whilst at the lab-scale virus abundance was positively 

associated with host  and β diversity respectively. However evidence of predator-prey (Lotka-

Volterra) dynamics between a subset of measured viruses and a key functional group (AOB) at the 

full-scale, dynamics which fundamentally underpin both concepts, is the most significant and 

principally important (Chapter 5). The estimated predation rate, akin to those from marine 

environments (Noble and Fuhrman, 2000), suggests viruses kill ~50% of AOB per day, thus if 

corroboratory evidence can be found (discussed in Chapter 9) such a finding might single handily 

change the way viruses are viewed in an engineered setting.  
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Equally the significant associations found between virus abundance and community function 

(effluent concentrations of COD and NH4
+-N), although contradictory results were found at full 

and lab scale respectively, suggests viruses may play a role in the performance of activated sludge 

plants, thus viruses warrant greater exploration in this regard (discussed in Chapter 9). 

Exogenous factors clearly played an important role in virus (Chapter 3 and 4) and host (Chapter 3) 

abundance and host community dynamics (Chapter 3 and 4), vindicating recent calls in viral 

ecology (Wigington et al., 2016). ML virus abundance across both full and lab scales was heavily 

influenced by pH and cation concentrations, thus environmental variables involved in the 

regulation of surface charge and electrostatic interactions, i.e. adsorption processes, are evidently 

central to virus proliferation in activated sludge, and potentially natural, systems. Nutrients 

availability, as in marine systems (Hewson et al., 2003; Øvreås et al., 2003; Williamson and Paul, 

2004; Motegi and Nagata, 2007; Sandaa et al., 2009), was also evidently important to ML virus 

abundance, shown directly at the full scale (NH4
+- N, phosphate and sulphur concentrations) and 

indirectly, since the HRT of CSTR’s controls its provision, at the lab scale. The corresponding 

associations found between certain deterministic parameters and ML virus and bacterial 

abundance (Chapter 3) and ML community composition (Chapter 3 and 4) additional supports 

they are coupled, as aforementioned, but also suggests deterministic triggers may be filtered 

through bacterial hosts and that variation in densities could systematically be driven by such 

factors. Interestingly nitrate concentrations at both full and lab scale were negatively associated 

with virus abundance, the lack of a known mechanistic reason for this warrants further study 

(Chapter 9). 

Finally wastewater viromes are evidently largely phylogenetically and functionally 

uncharacterised, although relative abundances of known dominant families and species vary 

throughout the wastewater treatment stream and between free and temperate viromes (Chapter 

7). Thus initial analysis implies free viruses in the ML and effluent differ to those in the influent 

and to temperate ML viruses, although future work is warranted to substantiate such claims. 

Refinement of the unique method introduced here, which identified 284 novel viral-like genomes, 

would certainly aid in this regard (Chapter 7).   

Overall the various studies incorporated here emphasise viruses appear spatiotemporally active 

and dynamic and potentially highly diverse in activated sludge, interacting with hosts at a number 

of levels and influencing the performance of these globally important systems. Certainly such 

findings substantially contribute to our understanding of virus dynamics in engineered and natural 

systems. Thus further exploration of their dynamics in such systems is warranted (Chapter 9).  
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8.3 Caveats 

The goal of this body of work was to ascertain the potential role virus’s play in the microbial 

ecology and function of engineered, principally activated sludge, systems, given their importance 

in natural environments. Preferably one would assess individual phage-host interactions in 

answering this question, however functional organisms of interest, thus their associated viruses, 

are typically unculturable, rendering culture dependent methods, i.e. plaque assays, unusable 

(discussed in Chapter 1). Culture independent methods are emerging yet their use in real world 

situations is currently limited (discussed in Chapter 1), thus the total abundance methods which 

underpin our understanding of viral ecology in marine systems seemed an obvious starting point, 

especially considering their limited application in an engineered setting. However, whilst the 

analysis undertaken elucidated some interesting biotic and abiotic associations, ultimately the 

analysis is at too coarser level to gain a true picture of virus-host/virus-community function 

interactions, particularly since viruses are now thought to influence bacterial communities at the 

strain level (Rodriguez-Brito et al., 2010; Thingstad et al., 2014; 2015).  

The complex nature of the microbial communities inherent to these systems, or in any system for 

that matter, also meant we were reliant on statistical inference to summarise and describe 

observed spatiotemporal patterns in and between total abundances, community composition and 

ecosystem functions. This has inherent problems. Firstly interactions may be asymmetric yet are 

depicted as symmetric, i.e. A influences B negatively but B influences A positively, yet the 

correlation of A with B and B with A is identical. Secondly the direction of interaction may fluctuate 

yet correlation requires constancy, i.e. A influences B positively but in certain situations A 

influences B negatively. Consequently certain identified associations maybe spurious, whilst 

others may have been missed. Moreover whilst we tried to back up detected associations with 

literary evidence and thus partially substantiate perceived causal relationships we cannot 

guarantee this to be the case, accordingly all relationships should be viewed as a foundation for 

future work exploring the true underlying ecological processes (Chapter 9). 

Finally the methods utilised in this study are not error-free. Quantitative real-time PCR (qPCR), 

although highly precise and sensitive across an extensive linear range (Suzuki et al., 2000; Klein, 

2002), suffers from many of the biases associated with PCR; only measuring gene copy number 

(not cell numbers) and its dependence on factors other than the amplification reaction e.g. sample 

preparation, DNA extraction, standard quality, choice of target gene and amplification primers 

and probes (Klein, 2002; Yu et al., 2005; Lim et al., 2008). Thus whilst all efforts were made to 

reduce these errors and accurately convert gene copy numbers per mL to bacteria per mL 
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respectively (described in Appendix III), total bacterial and AOB counts may have suffered from 

bias. Although the method adopted for AOB quantification has been comprehensively validated 

(Baptista et al., 2014). Likewise, since PCR was used in their generation, the microbial community 

data produced using 16s rRNA sequencing may have also suffered. There is also uncertainty errors 

associated with the determination of physicochemical environmental parameters. Overall 

however the errors in this study are not perceived to be any greater than those experienced in 

similar studies. 

8.4 Conclusions 

 FCM is suitable for quantifying total virus abundance in activated sludge samples when 

accompanied by appropriate sample pre-treatment.  

 Viruses in the ML were highly abundant and temporally dynamic across activated sludge 

systems. 

 ML Viruses were positively associated with total bacterial abundance spatiotemporally 

across activated sludge systems. 

 Viruses were associated with shifts in the composition of ML bacterial community’s and 

the dynamics of specific, highly abundant OTU’s. 

 ML Viruses were spatiotemporally associated with abiotic parameters with underlying 

mechanistic reasons. 

 Influent, ML and effluent Viruses were spatiotemporally associated with system function. 

 Evidence of predator-prey dynamics was evident between a subset of viruses and AOB 

within the ML of a full scale activated sludge plant. 

 ML viruses were relatively less abundant at high host densities, following the emerging 

paradigm in viral ecology. 

 The majority of viruses are phylogenetically and functionally uncharacterised in influent, 

ML and effluent wastewaters, thus have novel diversity. Yet known viral families and 

species evidently differ throughout the treatment stream, with potentially greater 

diversity apparent in ML and effluent viromes.  
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FUTURE WORK 
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Demonstration that viruses are abundant, spatially and temporally dynamic and statistically 

associated with bacteria at the total abundance, community, functional and OTU level has led to 

the conclusion that viruses may play a major role in the dynamics of activated sludge systems, 

particularly considering they were also implicated in a systems functional stability. In establishing 

such a role we have proposed a number of hypotheses and generated a vast amount of data which 

could form the basis of further work. Moreover, and perhaps more importantly given the recent 

explosion of novel tools, technologies and theories, we have access to 1000’s of frozen (-80oC), 

archived samples from both the full (Chapter 3) and lab scale studies (Chapter 4), of which the 

former now extends to 5 years of weekly samples.  

Given the coarse nature of the analysis undertaken, i.e. the use of total virus abundance, 

identifying whom infects whom is paramount in obtaining a greater understanding of viral 

dynamics and virus-host interactions in engineered systems, a situation analogous to that in 

natural environments (Breitbart, 2012; Brum and Sullivan, 2015). The theoretical approach 

adopted here (Chapter 5) could help in this regard, since it offers a means of identifying predator-

prey type dynamics in complex, natural microbial communities and thus those bacterial taxa 

potentially under predation. Indeed the qPCR data here could be used to convert proportional 

bacterial abundances to actual (Chapter 3 and 4) and thus facilitate a theory-based investigation 

of predator-prey dynamics across thousands of taxa at both full and lab scales. Those taxa with 

comparable associations to those identified between ammonia oxidising bacteria (AOB) and mixed 

liquor (ML) virus abundance (Chapter 5) would be prime candidates for hosts actively interacting 

with viruses. Moreover analogous associations utilising sequence based AOB (Nitrosomonas) 

counts from both full- and lab-scale studies would help corroborate previous findings (Chapter 5). 

Alternatively, or in addition, those bacterial taxa found to be associated with ML virus abundance 

using local similarity analysis (LSA,  Chapter 3 and 4) may also be potential hosts for future work, 

supplementary approaches for computing such correlation networks could help corroborate and 

extend such findings (e.g. CoNet (Faust et al., 2012), the miximal information coefficient (MIC, 

Reshef et al., 2011), MENA (Zhou et al., 2011; Deng et al., 2012b) and SparCC (Friedman and Alm, 

2012)). 

Whilst this identifies potential bacterial hosts of interest, alongside known functional organisms 

such as AOB, the metagenomic data produced here (Chapter 7) also provides a source of potential 

viral targets, particularly those novel viruses extracted using the presented novel technique found 

solely, or at greater abundance, in the ML and effluent, that is those presumed to be actively 

interacting with hosts. Indeed computational analysis (reviewed by Edwards et al., 2016) of these 
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viromes, alongside FISH-FACS generated, AOB enriched metagenomes from the same wastewater 

treatment plant (Fig. 8.1 D, Bell et al., unpublished, modified from Haroon et al., 2013), could offer 

a first pass at identifying AOB infecting viruses. Single-cell genomics-based analysis of the AOB 

metagenomes, as described by Labonté et al. (2015), may equally detect AOB infecting viruses 

and identify modes of virus-AOB interaction. Accordingly temporal extension of both the ML virus 

(and effluent) and AOB enriched metagenomic data sets using archived samples, as well as the 

generation of standard metagenomic data, would aid in such approaches, as would the generation 

of RNA viromes. Moreover the former and the latter, coupled with the already generated 16s 

sequence data (Chapter 3 and 4), may enable statistical approaches (e.g. LSA, CoNet, MIC etc.) to 

further identify potential virus-host pairs (e.g. Zhang et al., 2017).  

Whilst such in silico analysis offers prioritisation of virus/host candidates for further experimental 

analysis, ultimately identifying whom infects whom requires in vivo experiments.  The garnered 

host and virus sequence data (Chapter 3, 4 and 7), or that generated in the future, is thus 

principally important, since available culture independent methods, such as viral tagging (Deng et 

al., 2012, 2014), phageFISH (Allers et al., 2013), microfluidic digital PCR (Tadmor et al., 2011) and 

more recently the polony method (Baran et al., 2018), require such knowledge. Of those available 

the polony method (Baran et al., 2018), for which I attended a workshop in February 2015, 

perhaps offers the greatest potential in linking viruses to their hosts, particularly since archived 

samples could be utilised. Using viral sequences of interest specific PCR primers and fluorescently 

labelled probes could be designed and utilised in this solid-phase PCR amplification method (Fig. 

9.1 A), whereby polonies, amplification spheres of fluorescently labelled viral DNA, can be 

visualised and quantified on polyacrylamide gels (Fig. 9.1 B). The use of general 16s probes and 

primers through duplex PCR and differing fluorophores enables simultaneous visualisation of 

potential hosts (Fig. 9.1 B), with colocalised polonies indicating an infected bacterial host. These 

colocalised polonies can then be picked, sequenced and thus the host identified. 

The development of FISH-FACS for sorting AOB from complex ML samples (Bell et al., unpublished), 

coupled with viral tagging (Deng et al., 2012a, 2014), also offers a potential opportunity for 

identifying AOB infecting viruses, or by modifying the FISH-FACS method viruses infecting any host 

of interest (Fig. 9.1 C). Here the viral fraction of a live sample is stained with a generic DNA stain 

(e.g. SYBR Green I /II or SYBR Gold) and then reintroduced and incubated alongside host cells, 

some of which, through adsorption and subsequent infection,  become tagged with fluorescently 

labelled viruses. Host cells of interest are then fluorescently labelled and sorted into three 

fractions using FISH-FACS; host of interest with tagged viruses, other hosts with tagged viruses 
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and untagged hosts (Fig. 9.1 C). The former fraction can be sequenced and infectious viruses of 

interest identified, sequencing the second fraction would additionally identify potential host-virus 

pairs for future work. Validation of both the polony method and viral tagged FISH-FACS could be 

achieved using previously isolated and culturable virus-host pairs.  

 

Figure 9. 1. (A) Proposed polony method for identifying hosts of known viruses from ML samples (modified from Baran et al., 2018). 
(B) Polony formation for a known virus, a no virus control and a virus and hosts (modified from Baran et al., 2018 using workshop 
protocols). (C) Proposed viral tagged FISH-FACS method for identifying viruses of known hosts from ML samples (modified from Brum 
and Sullivan, 2015). (D) Example cytogram of FISH-FACS sorted AOB cells (Blue, Bell et al., unpublished). 

Once relevant virus-host pairs have been identified the polony method, or simpler approaches 

such as qPCR and/or droplet digital PCR, could be utilised to temporally track virus-host dynamics 

using the archived samples. Such work would facilitate assessment and development of existing 

evolutionary/ecological models describing virus-host interactions (e.g. kill the winner and 

fluctuating selection), it would enable viruses to be incorporated into new predictive ecological 
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models and, from an engineered systems perspective, it may permit their inclusion in biokinetic 

models predicting a systems performance (e.g. the activated sludge (Henze et al., 2000) and/or 

the anaerobic digestion models (Batstone et al., 2002)). As such elucidation of the viruses infecting 

functional organisms is a priority if the latter, as well as a better understanding of the role viruses 

play in the functional dynamics of engineered systems, is to be achieved. 

Elucidating drivers of the lysogenic-lytic switch is another area of importance across all of viral 

ecology, particularly in light of recent findings that viruses are relatively less abundant at high host 

densities (Wigington et al., 2016; Knowles et al., 2016, Chapter 6) and the consequent proposition 

of the contentious “Piggyback-the-Winner” hypothesis (PtW, Knowles et al., 2016; Weitz et al., 

2017; Knowles and Rohwer, 2017; Knowles et al., 2017). As previuously argued (Chapter 6) 

engineered systems, given their comparatively high host densities, evidence of lysogeny (Choi et 

al., 2010; Motlagh et al., 2015) and their highly controlled and monitored environments, offer 

fertile testing grounds in this regard. Indeed frequent monitoring of total virus and host 

abundance in a simple dilution experiment using ML could confirm or discredit PtW, if correct the 

lytic cycle should predominate at higher dilutions and thus increase viral abundance in a step-wise 

manner, or perhaps once host abundance drops below a critical threshold. Simultaneous 

metagenomic analysis of both the viral and cellular fractions from each dilution would allow 

assessment of the presence or absence of “hallmark” genes associated with lysogeny and, 

potentially, an increase or decrease in identifiable prophages (Labonté et al., 2015), further 

corroborating or discrediting PtW. Quantification of free viruses in ML post and pre chemical 

induction may also help identify the presence, or absence, of lysogenic viruses in ML, although the 

robustness of this method as a measure of lysogeny has recently been questioned (Knowles et al., 

2017). 

Although not previously discussed those factors influencing virus abundance at both full (Chapter 

3) and lab scales (Chapter 4), particularly those influencing adsorption process, could be prime 

candidates for abiotic drivers of the lysogenic-lytic switch. Manipulation of such variables in simple, 

well monitored replicate microcosm experiments, where virus and host abundance and 

metagenomes (also 16s for hosts) can be determined/generated at high temporal frequency, 

would aid in understanding their role, whether that be related to lysogeny or not. Given its role at 

both full (Chapter 3) and lab scales (Chapter 4) similar experiments and analysis could also help 

elucidate the role of virus immigration, whereby a wastewater viral concentrate, generated using 

tangential flow filtration, is spiked at known, varying concentrations into a number of replicate 

ML microcosms. 
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Another issue across viral ecology, as experienced here (Chapter 7), is that the majority of 

generated viromes lack similarity to reference sequences in extant databases, thus the inferential 

power of metagenomic data is limited (Brum and Sullivan, 2015). As such refinement of the 

approach to identify novel viral-like genomes presented here is pertinent (Chapter 7). Certainly 

defining and curating a robust set of representative viral homologies will be essential for 

maximising the recovery of individual virus sub-graphs (viral-like genomes), whilst detecting and 

incorporating ORFans, coding sequences with no homologs, may also pay dividends (Barrientos-

Somarribas et al., 2018). Comparison against existing techniques would also be warranted (e.g. 

Roux et al., 2014; Li et al., 2016; Barrientos-Somarribas et al., 2018), whilst extending its use to 

existing, hitherto untapped datasets, given the comparatively small-scale investigation here 

extracted > 280 novel viral-like genomes, could unearth further complete or nearly complete 

novel viral genomes. Accordingly following refinement and validation its use will hopefully enable 

new insight into viral dynamics in engineered and natural systems alike. 

Other potential areas of future work lie in the application of the developed, or proposed, methods 

in other engineered systems. Indeed the role of viruses in anaerobic digesters has recently been 

explored (Zhang et al., 2017) and modelled (Louca and Doebeli, 2017), with members of the viral 

community being linked to host taxa and system performance (Zhang et al., 2017) and implicated 

in high taxonomic turnover and functional stability (Louca and Doebeli, 2017). Alike AOB and 

nitrification the process is dependent on a functional group (methanogens) low in diversity, thus 

system performance could be impacted by viral infection, warranting investigation. Similarly 

evidence implying viruses can control biofilm growth and alter biofilm diversity, architecture and 

function (Sutherland et al., 2004) warrants exploration of their dynamics in attached growth 

systems such as trickling (wastewater treatment) and slow sand filters (drinking water treatment). 

In summary a vast amount of future work, although challenging, could be undertaken in this 

emerging and exciting nexus of viral ecology and wastewater/water microbial ecology. 
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APPENDIX I 
AN INTRODUCTION TO WASTEWATER TREATMENT 
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I.1. Introduction 

Municipal and industrial wastewaters are characterised by varying amounts of oxygen-depleting 

organics, inorganic particles, toxic substances, heavy metals, nutrients, pharmaceuticals and 

pathogens, thus prior to its reuse or release into receiving waters treatment is required. This is 

typically achieved through combining physical, chemical and biological processes, termed 

preliminary, primary, secondary and tertiary treatment respectively in conventional systems. In 

the UK the level of treatment, thus the number and type of processes needed, is defined by 

legislation described in the Urban Wastewater Directive (91/271/EEC), which ensures that public 

health and the environment is protected.   

Preliminary treatment involves removing gross solids, such as rags, floatables, grit and grease, that 

could damage or interfere with subsequent process equipment, reduce treatment reliability and 

effectiveness and/or cause effluent (treated wastewater) contamination. This is typically achieved 

using coarse and/or fine screens and grit chambers (Fig. I.1). Subsequently primary sedimentation, 

using large, mechanically cleaned circular or rectangular tanks, is implemented to remove a 

substantial portion, 50 – 70%, of readily settleable organic solids, as well as remaining floatables. 

Chemical addition prior to primary sedimentation, termed pre-precipitation, facilitates the 

concurrent removal of phosphorous and some heavy metals with primary solids. Chemical 

processes, such as oxidation and precipitation, are similarly used within secondary treatment to 

remove the majority of remaining organics and nutrients, although biological systems, discussed 

in greater detail in section I.2, are more widespread. Finally tertiary processes, including filtration, 

oxidation, precipitation and disinfection, are implemented when residual contamination exists.  

 

Figure I. 1. Process flow diagram of a conventional, biological wastewater treatment system. 

I.2. Biological Secondary Treatment 

Secondary treatment is dominated by biological systems which utilise microorganisms to 

biodegrade organics, capture and incorporate colloids, transform and remove nutrients and, in 

some instances, degrade trace constituents and compounds. These systems can be divided into 

two main categories: attached growth processes, such as trickling filters, biological towers and 

rotating biological contactors, and suspended growth processes, such as activated sludge, 
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anaerobic digestion and aerated lagoons. The most common of all these systems, regardless of 

category, is activated sludge, which, as a consequence, is the system under study here. 

I.3. The Activated Sludge Process 

 The activated sludge process, discovered by Ardern and Lockett (1914), typically consists of an 

aeration tank, a secondary sedimentation tank and a solids recycling and waste line respectively 

(Fig. I.1). The aeration tank is a suspended-growth reactor in which microorganisms, harnessed to 

consume and oxidise input organics and nutrients, are grown in suspended aggregates, or flocs 

(Fig. I.2), due to continuous aeration and/or mechanical mixing. The slurry of treated wastewater 

and flocs, termed mixed liquor or activated sludge, then passes to the sedimentation tank where 

flocs settle, producing a clear effluent at the surface, which can be discharged or tertiary treated, 

and a “thickened” return activated sludge (RAS) at the base, which can be returned to the aeration 

tank or wasted (Fig. I.1). Capturing and recycling flocs in this way augments microbial biomass 

within the aeration tank and reduces the hydraulic retention time (HRT) required to treat influent 

wastewaters, whilst wasting RAS enables the solids retention time (SRT) and thus, due to varying 

growth rates, the presence and absence of certain bacteria to be controlled.  

 

Figure I. 2. Full (A) and lab (B) scale activated sludge flocs observed by confocal laser scanning microscopy after fluorescence in situ 
hybridization (taken from Ofiteru et al., 2015). Green - heterotrophic bacteria; blue - ammonia oxidizing bacteria; yellow - nitrite 

oxidizing bacteria.  

Mixed liquor itself consists of a complex and varied community of microorganisms, with bacteria, 

protozoa, rotifers, fungi and bacteriophage all thought to be present. The most abundant of these 

are heterotrophic bacteria, which, alongside extracellular polymers, inert particulates, non-

biodegradable organics and water, are the main constituent of activated sludge flocs (Fig. I.2). As 

primary consumers of organic waste heterotrophs are also heavily important to the active sludge 
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process, converting it to carbon dioxide, water and new bacterial cells. Autotrophs, particularly 

ammonia and nitrite oxidisers, are also important to floc structure (Fig. I.2) and the activated 

sludge process, since they oxidise ammonia in a two-step process to nitrite and then nitrate. It is 

these two groups of organism, and their growth kinetics, that form the basis of activated sludge 

process design. 
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APPENDIX II  
AN INTRODUCTION TO BACTERIOPHAGES 
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I.1. What is a phage?! 

Viruses are a group of small biological entities, typically 30 – 60nm consisting of a nucleic acid 

genome (single or double stranded RNA or DNA) encapsulated in a protein or lipoprotein coat, or 

capsid (Kutter and Sulakvelidze, 2004; Weinbauer, 2004; Withey et al., 2005). Bacterial viruses, 

coined “bacteriophages” (phages) by D’Herelle in 1917, are those viruses that infect prokaryotes 

and are split into 13 families (Weinbauer, 2004). In general phages, or a specific group of phages 

making up 95% of all those discussed in the literature and almost all those thought to be significant 

in the environments discussed in this paper, namely tailed phages, are often characterised by a 

head, or capsid, and a tail, held together by a protein connector (Sabour and Griffiths, 2010). 

Phages, like all viruses, are obligate intracellular parasites with no intrinsic metabolism, thus they 

require the metabolic machinery of a host cell to survive and reproduce (Withey et al., 2005).  

I.2. The Phage Infection Cycle 

Initial contact with a host cell typically occurs through a diffusion mediated extracellular search 

and subsequent chance collision between a phage and a bacterium, thus contact is often 

dependent on host concentrations (Kutter and Sulakvelidze, 2004). Phage adsorption follows and 

occurs in two steps (Weinbauer, 2004). Firstly reversible binding is undertaken, where a phage 

recognizes a susceptible host through the interaction of attachment sites on specialised 

adsorption structures, such as tail fibres or spikes, and host surface molecules (Kutter and 

Sulakvelidze, 2004; Weinbauer, 2004). This positions the phage correctly on the host cell surface 

and triggers a structural rearrangement in the tail, allowing irreversible attachment, the second 

adsorption step  (Sabour and Griffiths, 2010). Here a different adsorption structure protein binds 

to the host bacterium; this is again mediated by specific receptors on the surface of the host, 

including carbohydrate, protein and lipopolysaccharide molecules (Marks and Sharp, 2000; 

Weinbauer, 2004). Many phages require a cluster of one specific type of molecule present in high 

concentrations to properly position adsorption structures for attachment (Kutter and Sulakvelidze, 

2004). 

Succeeding irreversible adhesion the phage genome must cross two or three major bacterial 

barriers, the outer membrane, the peptidoglycan layer and the inner membrane, to initiate 

infection (Sabour and Griffiths, 2010). To do this phages employ strategies that vary with 

morphology, but in general an enzymatic mechanism exists within the tail tip for penetrating the 

aforementioned membranes (Kutter and Sulakvelidze, 2004). Once penetrated the protein 

connecting the head and tail of the phage changes shape, disabling the blocking mechanism 

stopping the premature extrusion of genomic material from the capsid (Sabour and Griffiths, 
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2010). Consequently the DNA is drawn rapidly into the hosts cytoplasm by cellular energetics, 

often involving available ATP, a membrane potential or enzyme action, although the mechanisms 

are highly varied (Kutter and Sulakvelidze, 2004; Sabour and Griffiths, 2010).  

After internalization of the bacteriophage genome the phase of infection begins, this can be 

divided into an eclipse period and a period of phage-progeny maturation (Calendar and Abedon, 

2005). The length and timing of each is dependent on a phages life cycle (discussed below), thus 

the eclipse period is either prevegetative in the sense of immediately preceding phage-progeny 

maturation, or is temporarily or greatly extended (Calendar and Abedon, 2005). The eclipse period 

begins with recognition of strong phage promoters by host RNA polymerase, leading to the 

transcription of immediate early genes, the products of which protect the phage genome and 

restructure the host cell appropriately for the needs of the phage (Kutter and Sulakvelidze, 2004). 

This may involve the redirection or inhibition of various macromolecular processes, such as 

transcription, translation or replication, as well as single enzymatic functions (Kutter and 

Sulakvelidze, 2004; Sabour and Griffiths, 2010). Once optimal metabolic conditions are established 

middle genes are then transcribed, producing products that synthesise new phage DNA, followed 

by a set of late genes, that encode components of the actual phage particle (Kutter and 

Sulakvelidze, 2004).  

The period of phage-progeny maturation, or morphogenesis, follows, where the replicated, 

concatemerized phage genomes are packed into new phage heads or capsids, a highly regulated 

process that can be briefly split into three major stages (Sabour and Griffiths, 2010). Firstly the 

phage head, an icosahedral protein shell known as the prohead or procapsid at this stage, is 

assembled around scaffolding proteins (Kutter and Sulakvelidze, 2004; Sabour and Griffiths, 2010). 

Located at one vertex of the prohead is the portal complex, the starting point for head assembly 

(Kutter and Sulakvelidze, 2004). In the next phase terminase, a DNA packing enzyme which docks 

to the portal complex, translocates the phage genome into the procapsid through ATP hydrolysis, 

transforming it into a mature capsid (Sabour and Griffiths, 2010). Following DNA packing the tail 

or adsorption structure, formed separately, is attached to the portal complex, completing the 

replication of new phage particles (Kutter and Sulakvelidze, 2004). The number of phages 

produced during a single cycle of infection, the burst size, varies between 50 and 200 new phage 

particles (Withey et al., 2005). 

At the end of the replication cycle and completing the phase of infection, newly formed phage 

particles, progeny, exit the host cell in search of new prey. To do this bacteriophages have 

developed two basic strategies. Filamentous phages, as a result of their unique morphogenesis, 
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continuously extrude their progeny across a host’s cell wall without causing death (Sabour and 

Griffiths, 2010). However most tailed phages exit host cells via fatal lysis, using specific lysis 

proteins. During the phase of infection a small hydrophobic membrane spanning protein, named 

Holin, accumulates and oligomerizes in the cytoplasmic membrane of the host (Sabour and 

Griffiths, 2010). Simultaneously a soluble and active endolysin, a phage encoded muralytic enzyme, 

also accrues. At a genetically predetermined time the holins forms a membrane lesion, 

permeabilizing the inner membrane and allowing the cognate endolysin contact with the 

peptidoglycan layer (Sabour and Griffiths, 2010). The endolysin degrades the peptidoglycan layer 

until the cell can no longer withstand the internal osmotic pressure, causing it to burst and thus 

release phage progeny into extracellular space (Sabour and Griffiths, 2010). The extracellular stage 

ends with the death of a phage or a new infection (Weinbauer, 2004). 

I.3. Phage Life Cycles 

The life cycle of most bacteriophages can be divided into two major groups: the lytic cycle and the 

lysogenic cycle, although such classification is probably a simplification of the diversity of phage 

life cycles that exist (Weinbauer, 2004). During the lytic cycle, the lytic or virulent phage 

immediately redirects the host metabolism towards the production of new phage virions, which 

are released upon cell lysis within minutes to hours of initial infection (Weinbauer, 2004). Thus 

during the infection process the eclipse period immediately proceeds the period of phage-progeny 

maturation. In contrast during the lysogenic cycle temperate phages, although they are able to 

propagate lytically like virulent phages, act more subtly and establish a stable relationship with 

their host cell, thus greatly extending the eclipse period (Casjens, 2003; Sabour and Griffiths, 2010). 

In this state the phage genome is replicated in concert with the host’s chromosome during host 

doubling, and virus genes that are detrimental to the host are not expressed (Casjens, 2003; 

Jacquet et al., 2010). During this association phage DNA, now called a prophage, is usually 

physically integrated into one of the native replicons of the host, or in some cases exists as a 

circular or linear plasmid in the bacterial cytoplasm (Casjens, 2003). The integrated prophage 

remains dormant inside the cell until induction (the triggering of the lytic cycle), at which point 

prophage genes required for lytic growth are expressed and progeny are produced and released 

through cell lysis (Jacquet et al., 2010). Induction can happen spontaneously and randomly in a 

small fraction of bacteria that harbour a given prophage, or specific environmental signals can 

cause simultaneous induction of a particular prophage in many cells (Casjens, 2003).  
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APPENDIX III     
SUPPLEMENTARY INFORMATION - COUPLED VIRUS-BACTERIA 

INTERACTIONS AND ECOSYSTEM FUNCTION IN AN ENGINEERED MICROBIAL 

SYSTEM 
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III.1. Supplementary Methods 

While it is common to simply assume constant per-taxa rRNA copy numbers (usually 2), it is 

recognized (Angly et al., 2014) that the value may vary quite considerably between taxa of 

different lineages, and that simply assuming a constant copy number can lead to significant 

misinterpretation of results (Angly et al., 2014; Props et al., 2017). For the current study, it is 

important that the qPCR measurements of total bacteria accurately reflect the true individual 

proportions, despite shifts in community composition. Thus, we corrected the qPCR counts using 

inferred copy numbers based on the taxomonic composition of each sample. The method closely 

follows that employed by Angly et al. (2014) and their CopyRighter software. Unfortunately, due 

to the relative age of CopyRighter and its choice of taxonomic database, it was necessary to re-

implement the code, utilizing up-to-date SILVA (v. 128, Quast et al., 2013), IMG (Markowitz et al., 

2012) and NCBI taxonomy tree (Benson et al., 2009; Sayers et al., 2009) databases (2017/08/18). 

Briefly, the complete Bacterial and Archael IMG database was retrieved from the JGI Genome 

Portal (Grigoriev et al., 2012; Nordberg et al., 2014) and filtered to include only those entries 

classified as "Finished" genomes. These finished genomes were then used to provide a "first pass" 

16s copy number annotation for a copy of the NCBI taxonomy tree, for those leaf nodes with a 1 

to 1 exact match to the corresponding IMG taxon id.  

Thus the starting point is a full taxonomic tree, for which some of the leaf nodes (species) have a 

"true" 16s copy number assignment. The copy number of each parent node (initially at the Genus 

rank) is then determined from the mean of the assigned child taxa, and any unassigned children 

are also given this mean value. The process is then repeated, but at successively higher taxonomic 

ranks (Family, Order, Class and finally Phyla). 

At the end of the process, all nodes in the taxonomy tree have been assigned an inferred 16s copy 

number, which is subsequently used to correct per-sample 16s taxonomic abundances from the 

16s amplicon data. The weighted mean of these corrected CN values was then used to correct the 

qPCR results. 
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III.2. Supplementary Results 

III.2.1. Bioreactor performance and abiotic conditions 

 

Table III. 1. Summary of bioreactor performance and operational conditions over the 2 year study period. 

Characteristic  Average Range 

Influent Flow Rate (m3 day-1) 8860.0 ± 2854.5 5365.4 - 17392.3 
Hydraulic Retention Time (hours) 10.6 ± 3.1 4.97 - 29.43 
Solids Retention Time (days) 11.13 ± 3.09 5.84 - 28.32 
ML Temperature (oC) 12.6 ± 3 6.3 - 17.9 
ML DO (mg L-1) 2.5 ± 0.8 1.09 - 8.34 
ML pH 6.56 ± 0.22 5.97 - 7.04 
Influent SS (g L-1) 0.13 ± 0.11 0.02 - 1.02 
ML SS (g L-1) 2.73 ± 0.47 0.97 - 3.65 
Effluent SS (g L-1) 0.03 ± 0.03 0 - 0.11 
Influent VSS (g L-1) 0.11 ± 0.06 0 - 0.51 
ML VSS (g L-1) 2.01 ± 0.4 0.69 - 3.4 
Effluent VSS (g L-1) 0.02 ± 0.02 0 - 0.11 
Influent COD (mg L-1) 223.2 ± 156.3 29 - 1172 
ML COD (mg L-1) 41.28 ± 35.35 13 - 254 
Effluent COD (mg L-1) 31.97 ± 28.51 2 - 154 
Influent NH4 - N  (mg L-1) 32.1 ± 16.2 5.8 - 99 
ML NH4 - N  (mg L-1) 14.06 ± 15,21 1.4 - 66.2 
Effluent NH4 - N  (mg L-1) 8.4 ± 14 0 - 76.4  
Influent Chloride (mg L-1) 81.1 ± 37.7 0.3 - 320.3 
ML Chloride (mg L-1) 88.02 ± 47.77 32.39 - 355.31 
Effluent Chloride (mg L-1) 89.8 ± 64.2 26 - 461.4  
Influent Fluoride (mg L-1) 2.99 ± 2.8  0.15 - 18.6  
ML Fluoride (mg L-1) 0.62 ± 0.83 0 - 5.16 
Effluent Fluoride (mg L-1) 0.61 ± 1.1 0 - 7.5  
Influent Nitrate (mg L-1) 3.8 ± 5.6 0 - 25.3 
ML Nitrate (mg L-1) 17.93 ± 17.66 0 - 63.39 
Effluent Nitrate (mg L-1) 44.5 ± 21.2 0.7 - 96.7  
Influent Nitrite (mg L-1) 0.34 ± 0.74 0 - 4.9 
ML Nitrite (mg L-1) 0.7 ± 1.05 0 - 5.64 
Effluent Nitrite (mg L-1) 0.47 ± 0.97 0 - 5.3 
Influent Phosphate (mg L-1) 12.8 ± 5.5 0.81 - 28.2 
ML Phosphate (mg L-1) 8.52 ± 9.22 0 - 68.98 
Effluent Phosphate (mg L-1) 4.7 ± 3.9 0 - 24.5  
Influent Sulphate (mg L-1) 68.5 ± 20.1 0 - 117.9 
ML Sulphate (mg L-1) 91.52 ± 9.22 0 - 147.64 
Effluent Sulphate (mg L-1) 96.6 ± 29.5 0 - 160.6 
Influent Aluminium (µg L-1) 352.4 ± 142.5 0 - 756.2 
Influent Arsenic (µg L-1) 9.3 ± 7.9 0 - 28.3 
Influent Cadmium (µg L-1) 3.1 ± 11.3 0 - 91.9 
Influent Calcium (mg L-1) 47.4 ± 8.7  31.3 - 70.2 
Influent Chromium (µg L-1) 15.8 ± 8.5 5.8 - 57.8 
Influent Copper (µg L-1) 63.3 ± 47.4  9.8 - 303.8 
Influent Iron (mg L-1) 3.6 ± 2.2 0 - 11.7 
Influent Lead (µg L-1) 11.8 ± 9.4 0 - 48.2 
Influent Magnesium (mg L-1) 11 ± 2.8 6.4 - 17.9 
Influent Manganese (µg L-1) 175.3 ± 66.9 59.9 - 537.4 
Influent Nickel (µg L-1) 18.7 ± 16.7 6.4 - 135.8 
Influent Potassium (mg L-1) 13.1 ± 3.1 4.6 - 20.9 
Influent Silicone (mg L-1) 3.65 ± 1.21 0.01 - 6.8 
Influent Sodium (mg L-1) 51.3 ± 14.5 27.5 - 97.8 
Influent Sulphur (mg L-1) 22.6 ± 4.3 10.6 - 36.6 
Influent Zinc µg L-1) 97.6 ± 43.8 38.5 - 428.1 

±denotes standard deviation across the 2 year sampling period. 
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Figure III. 1. Variations in plant operational and environmental parameters during the 2 year study period. 
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Figure III. 2. Variations in measured operational and environmental parameters during the 2 year study period. 
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Figure III. 3. Variations in influent trace metal concentrations during the 2 year study period. 
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III.2.2. Virus interactions with biotic and abiotic conditions 

 

Table III. 2. ML virus GLS regression model. 

Correlation Structure Estimate (Phi) 
Phi 95% CI's  
(min, max) 

P-Value 
    

Continuous AR(1) ~Week 0.2701805 0.01, 0.56 0.0242 *    

Coefficient Estimate SE t-Value VIF 
95% CI's  
(min, max) 

P-Value  

Intercept 7.658220 0.3269756 23.421379 NA 7.01, 8.31 < 0 x 10-4 *** 
Influent Magnesium -0.111927 0.0157274 -7.116712 2.66 -0.14, -0.08 < 0 x 10-4 *** 
Influent NH4

+-N 0.082932 0.0245058 3.384159 1.94 0.03, 0.13 0.0011 ** 
Influent Phosphate 0.051780 0.0192322 2.692371 1.34 0.01, 0.09 0.0085 ** 
Influent Sulphur 0.084989 0.0139979 6.071562 2.39 0.06, 0.11 < 0 x 10-4 *** 
Influent Virus 0.070807 0.0301316 2.349925 1.15 0.01, 0.13 0.0210 * 
ML AOB 0.068876 0.0324239 2.124228 1.30 0.01, 0.13 0.0364 * 
ML Fluoride 0.024139 0.0098516 2.450294 1.15 0.01, 0.04 0.0162 * 
ML Nitrate -0.031683 0.0086946 -3.643961 2.05 -0.05, -0.01 0.0004 *** 
ML Nitrite -0.028170 0.0092757 -3.037017 1.67 -0.05, -0.01 0.0031 ** 
ML pH 0.024975 0.0104911 2.380580 1.42 0.00, 0.05 0.0194 * 
ML Sulphate -0.054635 0.0113081 -4.831522 1,51 -0.08, -0.03 < 0 x 10-4 *** 

All measured biological, operational and environmental variables included as covariates except Effluent Virus (prior ML community), 

Ki = 57, n = 102, R2 = 0.83. Anderson-Darling Test P = 0.6435. All VIF scores < 3. SE = standard error. CI = confidence interval.  ANOVA 
P-Value comparing models with identical fixed effects but with and without correlation structure. ° P < 0.1, * P < 0.05, ** P < 0.01, *** 
P < 0.001. 

 

 

 

Figure III. 4. Diagnostic plots assessing linearity (A, B), homoscedasticity (B, C), residual normality (D) and residual independence (E, F) 
of the ML virus GLS regression model. 
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III.2.2.1. ML total bacteria GLS model 

Table III. 3. ML total bacteria GLS regression model. 

Correlation Structure Estimate (Phi) 
Phi 95% CI's  
(min, max) 

P-Value 
    

Continuous AR(1) ~Week 0.6923042 0.511, 0.692 < 1 x 10-4 ***    

Coefficient Estimate SE t-Value VIF 
95% CI's  
(min, max) 

P-Value  

Intercept 2.9063594 1.9755254 1.471 NA -1.02, 6.83 0.1447  
Influent Calcium 0.0583154 0.0324226 1.799 1.37 -0.01, 0.12 0.0754 ° 
Influent Fluoride -0.0945430 0.0304022 -3.110 1.17 -0.16, -0.03 0.0025 ** 
Influent Iron -0.0559659 0.0266322 -2.210 1.14 -0.11, -0.00 0.0383 * 
Influent Sulphur -0.0770958 0.0285081 -2.704 1.30 -0.14, -0.02 0.0082 ** 
ML Chloride 0.0661114 0.0240350 2.751 1.04 0.02, 0.11 0.0072 ** 
ML Phosphate -0.1117296 0.0447715 -2.496 1.75 -0.20, -0.02 0.0144 * 
ML Virus 0.6147413 0.2188601 2.809 1.43 0.18, 1.05 0.0061 ** 
Effluent Phosphate 0.1489278 0.0466262 3.194 1.67 0.06, 0.24 0.0019 ** 
Effluent Sulphate 0.1228601 0.0285461 4.304 1.22 0.07, 0.18 < 0 x 10-4 *** 

All measured biological, operational and environmental variables included as covariates except ML AOB (subset of ML Bacteria), Ki = 

57, n = 102, R2 = 0.53. Anderson-Darling Test P = 0.3025. All VIF scores < 3. SE = standard error. CI = confidence interval.  ANOVA P-
Value comparing models with identical fixed effects but with and without correlation structure. ° P < 0.1, * P < 0.05, ** P < 0.01, *** P 
< 0.001. 

 

Figure III. 5. Diagnostic plots assessing linearity (A, B), homoscedasticity (B, C), residual normality (D) and residual independence (E, F) 
of the ML bacteria GLS regression model. 

The ML total bacteria GLS model also identified strong positive associations with influent calcium 

(P < 0.1), ML chloride (P < 0.01) and effluent sulphate  (P < 0.001) and phosphate (P < 0.01) 

concentrations, whilst influent Fluoride (P < 0.01), iron (P < 0.05) and sulphur (P < 0.01) and ML 

phosphate (P < 0.05) concentrations were negatively associated (Table III.3).  
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III.2.2.2. ML AOB GLS model 

Table III. 4. ML AOB GLS regression model. 

Correlation Structure Estimate (Phi) 
Phi 95% CI's  
(min, max) 

P-Value 
    

Continuous AR(1) ~Week 0.220039 0.20, 0.24 0.019 *    

Coefficient Estimate SE t-Value VIF 
95% CI's  
(min, max) P-Value  

Intercept 2.7946612 1.5482351 1.805063 NA -0.28, 5.87 0.0746 ° 
Influent AOB 0.1302831 0.0487218 2.674021 1.34 0.03, 0.23 0.0090 ** 
Influent Sulphate 0.0958521 0.0300576 3.188945 1.43 0.04, 0.16 0.0020 *** 
Influent Sulphur -0.0829007 0.0326164 -2.541688 1.56 -0.15, -0.02 0.0128 * 
ML Virus 0.9233023 0.2199362 4.198046 1.87 0.49, 1.36 0.0001 *** 
Effluent NH4

+-N 0.0577049 0.0249816 2.309898 1.16 0.01, 0.11 0.0233 * 
Effluent Chloride 0.0622500 0.0283608 2.194933 1.15 0.01, 0.12 0.0309 * 
Effluent Nitrite 0.0699123 0.0256705 2.723451 1.06 0.02, 0.12 0.0078 ** 
Effluent Virus -0.5384314 0.1920804 -2.803156 1.79 -0.92, -0.16 0.0063 ** 

All measured biological, operational and environmental variables included as covariates except ML Bacteria (encompasses AOB), 
Influent AOB included as statistically significant, Ki = 59, n = 95, R2 = 0.47. Anderson-Darling Test P = 0.7136. All VIF scores < 3. SE = 

standard error. CI = confidence interval.  ANOVA P-Value comparing models with identical fixed effects but with and without 
correlation structure. ° P < 0.1, * P < 0.05, ** P < 0.01, *** P < 0.001. 

 

 

Figure III. 6. Diagnostic plots assessing linearity (A, B), homoscedasticity (B, C), residual normality (D) and residual independence (E, F) 
of the ML AOB GLS regression model. 

The ML AOB GLS model also identified strong positive associations with influent AOB abundance 

(P < 0.01) and concentrations of influent sulphate (P < 0.001) and effluent NH4
+-N (P < 0.05), 

chloride (P < 0.05) and nitrite  (P < 0.01), whilst influent sulphur (P < 0.05) concentrations were 

negatively associated (Table III.4).  



 
 

185 
 

III.2.3. Virus interactions with bacteria community structure 

Table III. 5. Summary of CCA analysis. 

 CCA Axis      

 1 2 3 4      

Eigenvalue 0.30019 0.16720 0.14967 0.08197      
Species-Environment Correlation 0.9187647 0.8177232 0.7518984 0.7376913      
Cumulative Percentage Variance          

Of Species Data 9.041 14.076 18.584 21.053      
Of Species-Environment 
Relationship 

33.310 51.860 68.460 77.557      

Permutation Test (Axis)          
F ratio 11.4163 6.3588 5.6922 3.1174      
P-Value < 0.001*** < 0.001*** < 0.001*** 0.004 **      

 Explanatory Variable 

 
ML 
Temperature 

Influent 
Potassium 

ML Virus ML Nitrite 
Influent 
Phosphate 

Influent 
Sulphur 

HRT ML NH4
+-N 

Effluent 
Nitrite 

Permutation Test (Marginal Effect)          
F ratio 7.8360 3.9854 2.8313 3.0122 3.0684 2.2224 2.1521 2.0749 1.8994 
P-Value < 0.001*** < 0.001*** < 0.001*** < 0.001*** < 0.001*** < 0.002** 0.002** 0.005** 0.009** 

Intraset Correlation Coefficient          
Axis 1 -0.91649 0.01446 -0.22353 0.18997 -0.10557 0.46368 0.15925 -0.31352 0.16563 
Axis 2 -0.19340 0.68680 -0.2376 0.50620 -0.14210 0.34480 0.34630 -0.53070 0.43280 
Axis 3 0.08593 -0.42061 -0.36894 0.58938 -0.59410 0.23713 -0.07004 -0.16102 -0.13638 
Axis 4 0.17000 0.16787 0.70477 -0.05776 -0.01740 -0.05791 0.33206 0.44728 0.42471 

VIF 1.75 2.02 2.61 1.53 1.70 2.04 1.11 1.98 1.58 

All measured biological, operational and environmental variables included as explanatory variables except ML Bacteria and AOB, n = 

102. Global permutation test F ratio = 3.801, P-Value <0.001***. All VIF scores < 3.  CCA axis 5 and 6 also significant, P < 0.01 and P < 
0.05 respectively. * P < 0.05, ** P < 0.01, *** P < 0.001. 
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APPENDIX IV 
SUPPLEMENTARY INFORMATION - VIRUS - BACTERIA INTERACTIONS, 
SYNCHRONICITY AND ECOSYSTEM FUNCTION IN REPLICATE ENGINEERED 
MICROBIAL SYSTEMS 
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IV.1. Supplementary Results 

Table IV. 1. Summary of influent characteristics. 

Characteristic  Average Range 

Influent pH  6.87 ± 0.20 6.48 - 7.48 

Influent SS (g L-1) 0.13 ± 0.07 0.00 - 0.67 

Influent VSS (g L-1) 0.12 ± 0.06 0.00 - 0.51 

Influent COD (mg L-1) 218.45 ± 78.38 59.00 - 441.00 

Influent NH4 - N  (mg L-1) 38.46 ± 10.23 10.10 - 69.00 

Influent Chloride (mg L-1) 69.12 ± 16.44 0.51 - 125.85 

Influent Fluoride (mg L-1) 3.80 ± 2.25 0.26 - 14.41 

Influent Nitrate (mg L-1) 1.29 ± 6.75 0.00 - 68.86 

Influent Nitrite (mg L-1) 0.21 ± 0.53 0.00 - 3.89 

Influent Phosphate (mg L-1) 18.96 ± 8.54 3.35 - 72.80 

Influent Sulphate (mg L-1) 67.08 ± 18.02 29.83 - 154.58 
Influent Aluminium (µg L-1) 415.1 ± 132.4 239.9 - 714 
Influent Arsenic (µg L-1) 6.8 ± 8.0 0 - 28.3 
Influent Cadmium (µg L-1) 1.02 ± 0.38 0.37 – 2.05 
Influent Calcium (mg L-1) 42.8 ± 3.8  35.1 – 50.9 
Influent Chromium (µg L-1) 18.3 ± 8.7 5.8 – 41.5 
Influent Copper (µg L-1) 101.4 ± 64.6  38.3 - 303.8 
Influent Iron (mg L-1) 5.30 ± 2.54 0 - 11.7 
Influent Lead (µg L-1) 20.2 ± 11.2 6.2 - 48.2 
Influent Magnesium (mg L-1) 8.66 ± 1.12 6.7 – 11.2 
Influent Manganese (µg L-1) 195.9 ± 57.6 99.5 – 375 
Influent Nickel (µg L-1) 20.1 ± 162.5 7.8 – 55.9 
Influent Potassium (mg L-1) 14.9 ± 2.21 9.14 – 18.5 
Influent Silicone (mg L-1) 3.68 ± 0.78 1.16 – 4.65 
Influent Sulphur (mg L-1) 20.7 ± 3.43 10.7 – 25.8 
Influent Zinc µg L-1) 119.2 ± 61.5 63.2 - 428.1 

±denotes standard deviation, n = 102. 
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Table IV. 2. Summary of Control CSTR’s performance and operational parameters during acclimatisation (day 0 - 72). 

 Control 1 Control 2 Control 3 Control 4 Control 5 Control 6 
Characteristic Mean SD Min Max Sig Mean SD Min Max Sig Mean SD Min Max Sig Mean SD Min Max Sig Mean SD Min Max Sig Mean SD Min Max Sig 
HRT/SRT (Days)* 4.48 0.62 3.92 7.88   

T2

   4.55 0.60 4.03 6.69   
T2

   5.24 3.18 4.03 22.37   
T1, T2

   5.70 4.14 3.20 27.89   
T1 - T3, T6

C6  4.48 0.47 3.41 6.16   
T2

  4.43 0.53 3.42 6.13   
 
C4 

Influent Flow (mL Hour)* 9.01 0.80 5.06 10.17   
T2

   8.80 0.92 5.90 9.81   
T2

   8.42 1.63 1.77 9.82   
T2

   8.30 2.00 1.46 12.71   
T2

   9.14 0.86 6.58 11.90  9.09 0.91 6.50 11.63  
ML Temp (°C)* 14.42 0.41 14.17 16.74   

T1 - T4, T6

C4 - C6   14.59 0.43 14.15 16.93   
T1 - T3

C5, C6   14.59 0.36 14.35 16.59   
T1, T4, T6

C4 - C6   14.74 0.33 14.36 16.54   
T1, T5

C1, C3  14.75 0.35 14.50 16.66   
T1, T5

C1 - C3  14.84 0.36 14.60 16.81   
T3 - T6

C1 - C3  
ML pH* 6.20 0.74 4.97 7.26  6.14 0.67 5.01 7.12  5.86 0.74 4.31 7.10  6.20 0.81 4.91 7.37  5.94 0.77 4.77 7.09  5.89 0.73 4.61 6.90  
ML DO (mg L-1)* 9.17 0.56 6.53 9.65   

T2, T3

C3, C5, C6  8.87 0.56 7.12 9.47   
T2, T4

C3   8.19 0.71 5.23 8.97   
T2, T3

C3, C5, C6  8.93 0.60 7.74 9.63   
T2, T4

C3   8.40 0.93 6.73 9.42   
T4, T6

C1   8.21 1.15 6.21 9.42   
T4, T6

C1   

Effluent COD  (mg L-1) 25.54 9.73 4.00 49.00  31.06 14.53 12.00 82.00  27.46 10.89 8.00 56.00  28.43 13.27 2.00 60.00  28.49 16.44 2.00 106.00  29.94 16.12 10.00 102.00  
Effluent NH4

+-N (mg L-1) 4.82 6.33 0.10 25.00  5.96 7.68 0.30 39.50  6.48 9.52 0.30 51.00  6.30 9.85 0.10 46.00  9.12 14.98 0.30 78.00  7.32 12.24 0.20 64.60  
ML SS  (g L-1) 0.21 0.40 0.00 2.01  0.23 0.41 0.01 1.90  0.31 0.45 0.06 2.03  0.20 0.36 0.00 1.79  0.21 0.36 0.00 1.85  0.21 0.38 0.00 1.86  
ML VSS  (g L-1) 0.17 0.29 0.00 1.52  0.19 0.32 0.00 1.54  0.25 0.35 0.00 1.63  0.17 0.26 0.00 1.32  0.17 0.27 0.00 1.41  0.17 0.27 0.00 1.37  
Effluent Nitrate  (mg L-1) 170.16 36.74 90.96 235.40  162.28 39.93 68.67 243.94  164.93 34.00 111.50 230.10  174.41 39.06 110.00 312.90  174.04 36.78 61.48 235.24  181.20 44.34 115.60 368.50  

Effluent Nitrite  (mg L-1)* 2.58 6.53 0.00 26.35  4.84 11.51 0.00 54.10  2.45 5.89 0.00 26.24  0.49 0.81 0.00 2.44  0.49 0.84 0.00 3.34  0.50 1.31 0.00 5.84  
Effluent Sulphate  (mg L-1) 93.00 49.07 58.14 328.30  93.06 39.40 55.15 224.31  96.56 45.76 57.02 280.63  95.89 45.31 55.22 303.21  91.82 43.61 55.37 310.63  96.21 55.14 19.51 321.21  
Effluent Phosphate  (mg L-1) 16.87 3.95 9.16 26.62  17.19 3.83 8.70 23.46  16.93 3.84 8.36 23.37  17.42 4.02 8.68 29.10  16.91 3.50 8.86 22.56  17.56 3.33 9.28 25.44  
Effluent Fluoride  (mg L-1) 0.47 0.29 0.30 1.53  0.48 0.29 0.29 1.46  0.52 0.31 0.28 1.46  0.59 0.43 0.30 2.34  0.56 0.47 0.29 2.76  0.56 0.41 0.29 2.03  
Effluent Chloride  (mg L-1) 83.56 10.36 65.70 129.62  82.13 7.90 63.09 95.56  80.68 7.96 50.54 90.88  83.94 10.98 54.35 128.87  81.39 9.62 41.87 96.61  84.98 13.60 66.42 151.20  

n = 36, SD = standard deviation, min and max = minimum and maximum value. * Significantly different between CSTR’s and from corresponding CSTR (Sig) at the 0.05 level. Anderson-Darling and Bartlett Test P < 0.05 for all 
comparisons.   

 

Table IV. 3. Summary of Control CSTR’s performance and operational parameters following acclimatisation (day 72 - 204). 

 Control 1 Control 2 Control 3 Control 4 Control 5 Control 6 
Characteristic Mean SD Min Max Sig Mean SD Min Max Sig Mean SD Min Max Sig Mean SD Min Max Sig Mean SD Min Max Sig Mean SD Min Max Sig 
HRT/SRT (Days)* 4.92 1.18 3.70 10.31   

T2, T4

   4.77 0.87 3.96 8.59   
T2, T4

   4.73 0.84 3.80 8.99   
T2, T4

   5.16 2.32 3.99 19.98   
T2, T4

   5.45 4.63 3.95 39.19   
T2, T4

C3   4.72 0.98 3.76 9.25   
T2, T4

   
Influent Flow (mL Hour)* 8.44 1.36 3.84 10.71   

T2, T4

   8.42 1.22 4.25 10.16   
T2 - T6

   8.35 1.07 4.40 10.10   
T2, T3, T5, T6

C5   8.48 1.58 1.98 10.12   
T2, T4

   8.51 1.62 1.03 9.98   
T2, T4

   8.61 0.93 4.82 10.18   
T2 - T4

   
ML Temp (°C)* 14.42 0.22 13.99 14.92   

 
C4  14.36 0.13 14.00 14.62   

 
C4, C6  14.36 0.11 13.95 14.54   

 
C4, C6  14.70 0.06 14.47 14.84   

T5

C1 - C3  14.55 0.11 14.15 14.87  14.69 0.10 14.24 14.86   
T5

C1 - C3  
ML pH* 5.97 0.98 4.44 7.51   

 
C3, C6  5.89 1.03 4.42 7.68  5.41 1.04 3.92 7.22   

T3, T6

C1, C4  5.94 0.98 4.52 7.64   
 
C3  5.53 1.03 4.23 7.31  5.44 1.13 4.13 7.61   

T6

C1  

ML DO (mg L-1)* 9.22 0.38 8.35 9.80   
T2, T4 - T6

C2 - C6   7.15 0.61 6.01 8.30   
T1, T3 - T6

C1   6.89 0.82 5.48 8.41   
T1, T3 - T6

C1, C4   7.92 1.23 6.44 9.89   
T1 - T3 

C1, C3   7.27 0.61 5.33 8.28   
T1, T3 - T6 

C1   7.40 1.02 5.17 9.72   
T1, T3, T5 

C1   

Effluent COD  (mg L-1)* 19.45 5.32 5.00 34.00   
T1

   20.63 6.23 6.00 37.00   
T1

   20.58 5.95 5.00 33.00   
T1

   19.61 7.37 6.00 51.00   
T1

   20.82 5.50 8.00 36.00   
T1

   20.37 6.84 9.00 42.00   
T1

   

Effluent NH4
+-N (mg L-1)* 2.07 1.98 0.10 11.80  2.26 2.42 0.20 16.50  2.32 1.47 0.20 7.20  2.56 2.10 0.00 11.40  2.68 2.14 0.00 14.30  2.77 2.33 0.40 15.90  

ML SS  (g L-1) 0.08 0.03 0.00 0.17   
T3,  T4

C3   0.09 0.04 0.01 0.22  0.11 0.06 0.00 0.31  0.10 0.07 0.00 0.28  0.10 0.06 0.02 0.39  0.11 0.10 0.01 0.72  
ML VSS  (g L-1) 0.07 0.03 0.00 0.17   

T3, T4

   0.08 0.04 0.01 0.20  0.10 0.05 0.00 0.30  0.09 0.05 0.00 0.20  0.09 0.05 0.02 0.37  0.10 0.09 0.01 0.58  
Effluent Nitrate  (mg L-1) 153.48 24.50 74.59 200.74  155.31 23.59 81.43 191.20  154.37 27.76 83.28 198.28  159.24 26.76 86.17 234.60  162.30 23.20 102.08 197.27  160.21 27.15 82.70 219.99  
Effluent Nitrite  (mg L-1) 0.08 0.38 0.00 2.84  0.06 0.24 0.00 1.46  0.08 0.26 0.00 1.45  0.06 0.19 0.00 1.34  0.06 0.23 0.00 1.31  0.10 0.33 0.00 2.31  
Effluent Sulphate  (mg L-1) 68.31 9.08 46.30 94.59  67.68 8.73 40.26 89.31  68.58 10.64 37.96 108.30  68.70 12.86 40.71 125.24  68.75 10.87 48.23 120.72  70.38 14.30 45.38 133.10  
Effluent Phosphate  (mg L-1) 23.09 4.48 14.64 32.89  22.99 4.23 13.22 30.39  23.04 4.50 12.86 31.98  23.40 5.14 2.12 33.70  23.75 4.36 16.29 32.86  23.62 4.73 14.53 37.92  
Effluent Fluoride  (mg L-1) 0.26 0.14 0.00 0.89  0.26 0.42 0.00 3.56  0.22 0.12 0.00 0.50  0.25 0.22 0.00 1.53  0.22 0.14 0.00 0.71  0.26 0.19 0.00 1.20  
Effluent Chloride  (mg L-1) 68.78 10.98 47.03 99.42  68.55 10.79 46.30 93.77  68.27 13.76 36.33 129.21  68.69 11.40 36.10 94.57  68.53 10.36 46.18 92.70  69.07 11.64 39.73 93.58  
n = 66, SD = standard deviation, min and max = minimum and maximum value. * Significantly different between CSTR’s and from corresponding CSTR (Sig) at the 0.05 level. Anderson-Darling and Bartlett Test P < 0.05 for all 
comparisons.   
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Table IV. 4. Summary of Test CSTR’s performance and operational parameters during acclimatisation (day 0 - 72). 

CSTR Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 
Characteristic Mean SD Min Max Sig Mean SD Min Max Sig Mean SD Min Max Sig Mean SD Min Max Sig Mean SD Min Max Sig Mean SD Min Max Sig 
HRT/SRT (Days)* 4.41 1.38 0.00 9.96   

T4

C3, C4  4.25 0.62 3.67 7.03   
T4, T5

C1 - C5  4.31 0.35 3.46 5.18   
 
C4  4.60 0.82 3.38 8.85   

T1, T2 

  4.51 0.63 3.57 7.01   
T2 

  4.53 1.48 0.00 10.27   
 
C4 

Influent Flow (mL Hour)* 8.77 1.95 0.00 10.16  9.55 1.01 5.69 10.91   
T4

C1 - C4 9.20 0.75 7.60 11.40  8.72 1.04 4.44 11.61   
T2 

  9.15 1.03 5.80 11.40  8.74 1.98 0.00 10.02  
ML Temp (°C)* 14.92 0.33 14.75 16.79   

T3 - T6 

C1 - C5   14.78 0.35 14.53 16.76   
T3, T5 

C1 - C3  14.59 0.39 14.11 16.49   
T1, T2, T5 

C6   14.70 0.30 14.45 16.36   
T1, T5

C1, C6 14.29 0.40 13.92 16.44   
T1 - T4, T6

C2 -  C6  14.69 0.35 14.17 16.53   
T1, T5

C1, C6 

ML pH* 6.36 0.65 5.04 7.14  6.32 0.70 5.24 7.51  6.06 0.68 4.82 7.18  6.26 0.78 4.91 8.15  6.07 0.72 4.84 7.10  6.40 0.78 4.99 7.49  
ML DO (mg L-1)* 9.03 0.45 6.68 9.42   

T2, T4

C3   8.13 0.65 6.01 8.93   
T1, T4, T6

C1, C2, C4  8.54 0.54 6.71 9.23   
T4, T6

C1   9.52 0.44 8.10 10.05   
T1 - T3, T6 

C2 - C6  8.64 0.80 6.99 9.70   
T4, T6 

  9.28 0.52 8.05 9.96   
T2, T3, T5 

C3, C5, C6  

Effluent COD  (mg L-1) 31.23 8.10 14.00 48.00  28.66 10.60 2.00 62.00  32.60 13.69 16.00 76.00  33.00 15.57 8.00 80.00  30.29 13.87 4.00 74.00  29.91 13.13 10.00 84.00  
Effluent NH4

+-N (mg L-1) 7.75 10.53 0.10 52.30  6.44 10.21 0.00 56.70  10.17 18.49 0.10 99.00  10.34 22.38 0.00 117.00  9.22 19.84 0.20 108.00  11.04 19.70 0.00 109.00  
Effluent SS  (g L-1) 0.23 0.38 0.00 1.99  0.24 0.36 0.01 1.84  0.31 0.48 0.01 2.38  0.21 0.35 0.00 1.74  0.23 0.37 0.00 1.71  0.23 0.44 0.00 2.29  
ML SS  (g L-1) 0.20 0.30 0.00 1.56  0.20 0.27 0.01 1.39  0.25 0.37 0.01 1.82  0.16 0.26 0.00 1.32  0.20 0.28 0.00 1.31  0.20 0.34 0.00 1.77  
ML VSS  (g L-1) 166.36 34.31 103.65 232.97  177.17 34.56 112.30 246.29  170.02 40.75 75.22 233.20  149.95 50.47 37.04 231.92  177.17 35.69 107.10 280.46  169.18 33.62 97.60 231.19  

Effluent Nitrite  (mg L-1)* 0.34 0.87 0.00 4.96  0.85 2.57 0.00 11.66  7.71 16.40 0.00 63.59  2.16 4.38 0.00 16.06  1.06 1.70 0.00 7.57  1.01 1.69 0.00 7.57  
Effluent Sulphate  (mg L-1) 90.66 36.06 56.51 253.07  94.97 48.26 54.14 287.87  92.14 53.47 54.83 366.03  97.59 58.99 54.72 317.26  97.49 41.94 56.91 233.93  83.73 25.34 54.55 197.16  
Effluent Phosphate  (mg L-1) 17.31 4.68 8.85 35.91  17.94 6.76 8.79 51.71  17.82 5.93 9.47 44.02  16.76 4.16 7.75 32.85  17.52 3.60 8.58 26.20  16.71 3.78 8.53 23.58  
Effluent Fluoride  (mg L-1) 0.46 0.19 0.28 1.10  0.50 0.33 0.28 1.74  0.46 0.30 0.27 1.80  0.54 0.42 0.29 2.22  0.52 0.28 0.31 1.56  0.41 0.18 0.28 1.37  
Effluent Chloride  (mg L-1) 83.23 7.71 70.28 99.17  80.26 13.81 15.11 99.62  79.86 11.81 46.06 110.14  81.74 7.71 69.37 101.32  81.77 15.52 14.16 117.14  83.13 8.46 68.63 106.46  

n = 36, SD = standard deviation, min and max = minimum and maximum value. * Significantly different between CSTR’s and from corresponding CSTR (Sig) at the 0.05 level. Anderson-Darling and Bartlett Test P < 0.05 for all 
comparisons.   

 

Table IV. 5. Summary of Test CSTR’s performance and operational parameters following acclimatisation (day 72 - 204). 

CSTR Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 
Characteristic Mean SD Min Max Sig Mean SD Min Max Sig Mean SD Min Max Sig Mean SD Min Max Sig Mean SD Min Max Sig Mean SD Min Max Sig 
HRT/SRT (Days)* 4.88 1.21 4.01 10.97   

T2, T4

   4.60 1.22 3.90 9.52  
 T1, T4, T6

 C1 - C6   4.80 1.42 3.97 11.78   
 T4

   5.09 1.25 3.72 11.63  
 T1, T2, T3, T5, T6

 C1 - C6   4.68 0.93 4.06 9.26  
 T4

   5.16 3.18 3.92 26.15   
T2, T4

   
Influent Flow (mL Hour)* 8.36 1.22 3.61 9.88   

T2, T3, T5, T6

  9.07 1.19 4.20 9.95  
 T1, T4

 C1 - C6  8.81 1.34 3.35 10.41  
 T1, T4

 C2, C3, C6  7.98 1.22 3.38 10.55  
 T2, T3, T5, T6

 C1, C2, C4-C6  8.81 1.17 4.27 10.02  
 T1, T4

 C2, C3  8.81 1.17 4.27 10.02  
 T1, T4

 C2, C3  

ML Temp (°C)* 14.82 4.40 8.62 21.11  14.74 4.32 8.65 21.01  14.48 4.32 8.42 20.80  14.60 4.40 8.56 20.99  13.98 4.38 7.85 20.27  
 

 C4, C6  14.41 4.28 8.29 20.57  
ML pH* 5.66 1.05 4.26 7.51  5.64 0.87 4.37 7.21  5.90 0.85 4.49 7.49  

 

 C3  5.76 0.77 4.58 7.23  5.74 0.87 4.43 7.37  5.94 0.97 4.34 7.50  
 

 C3, C6  
ML DO (mg L-1)* 8.72 0.78 7.50 10.08  

 T2

 C2 - C6   6.96 0.72 5.65 8.54  
 T1, T3 - T6

 C1, C4   8.59 0.81 6.50 10.21  
 T2

 C2 - C6   8.14 1.10 6.31 10.57  
 T2

 C1, C2, C3, C5  8.54 1.80 4.98 10.83  
 T2

 C1-C3, C5, C6  8.49 2.25 4.91 11.62  
 T2

 C1, C2, C3, C5  
Effluent COD  (mg L-1)* 27.18 13.11 10.00 83.00  

 T4, T6

 C1 - C6  21.81 7.32 1.00 49.00  22.64 6.63 6.00 39.00  20.13 6.50 10.00 47.00  
 T1

   21.97 6.48 7.00 38.00  20.15 5.41 10.00 33.00  
Effluent NH4

+-N (mg L-1)* 2.73 2.09 0.40 9.50  2.57 2.15 0.30 9.90  3.02 2.55 0.20 15.30  2.65 2.08 0.20 9.50  3.16 2.59 0.20 14.10  3.46 4.26 0.00 30.30  
ML SS  (g L-1) 0.09 0.06 0.01 0.29  0.11 0.06 0.00 0.29  0.12 0.07 0.01 0.44  

 

 C1  0.12 0.12 0.01 0.91  
 

 C1  0.08 0.05 0.01 0.24  0.11 0.07 0.01 0.48  
ML VSS  (g L-1) 0.08 0.05 0.01 0.26  0.10 0.05 0.00 0.28  0.10 0.06 0.01 0.37  

 

 C1  0.11 0.10 0.01 0.77  
 

 C1  0.09 0.07 0.01 0.41  0.09 0.07 0.01 0.41  
Effluent Nitrate  (mg L-1) 162.48 28.02 94.90 223.62  165.97 24.42 100.10 210.44  162.69 28.69 80.49 254.60  161.86 24.89 85.26 197.89  159.55 28.67 81.42 201.72  158.32 25.80 91.97 200.65  
Effluent Nitrite  (mg L-1) 0.08 0.34 0.00 2.24  0.12 0.32 0.00 1.57  0.06 0.22 0.00 1.30  0.18 0.54 0.00 3.74  0.05 0.24 0.00 1.65  0.03 0.14 0.00 1.02  
Effluent Sulphate  (mg L-1) 69.41 14.80 41.00 134.15  68.93 11.42 38.79 98.86  67.90 12.96 40.67 141.19  69.79 19.57 40.92 210.13  67.79 7.75 45.50 85.66  67.37 9.66 42.09 91.57  

Effluent Phosphate  (mg L-1) 24.16 4.77 16.50 40.88  24.09 4.08 17.07 35.41  24.05 3.90 17.28 31.75  24.39 4.25 16.36 33.06  23.62 4.37 15.76 32.35  23.50 4.57 14.26 32.62  
Effluent Fluoride  (mg L-1) 0.35 0.47 0.00 3.72  0.31 0.50 0.00 3.97  0.26 0.22 0.00 1.59  0.25 0.20 0.00 1.32  0.23 0.13 0.00 0.61  0.29 0.50 0.00 4.15  
Effluent Chloride  (mg L-1) 70.61 14.56 45.15 146.11  68.59 11.17 41.97 91.48  68.22 10.90 47.13 92.94  68.02 9.69 45.65 91.82  67.55 10.71 39.35 93.18  68.31 11.56 42.85 90.47  

n = 66, SD = standard deviation, min and max = minimum and maximum value. * Significantly different between CSTR’s and from corresponding CSTR (Sig) at the 0.05 level. Anderson-Darling and Bartlett Test P < 0.05 for all 
comparisons.  
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Figure IV. 1. Variation in operational and environmental parameters in all CSTR’s over the 204 day study. Dashed line represents the 
end of acclimatisation. (A – F) Control 1 – 6, (G – L) Test 1 – 6. 
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Figure IV. 2. Variation in operational and environmental parameters in all CSTR’s over the 204 day study. Dashed line represents the end of 
acclimatisation. (A – F) Control 1 – 6. (G – L) Test 1 – 6. 
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Figure IV. 3. Variation in operational and environmental parameters in all CSTR’s over the 204 day study. Dashed line represents the end 
of acclimatisation. (A – F) Control 1 – 6. (G – L) Test 1 – 6. 
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Table IV. 6. Summary of influent biotic conditions. 

Biotic Parameter Mean SD Min Max 

Influent Viruses × 108 mL-1 0.98   0.65 0.29 2.72 
Influent Bacteria × 107  mL-1 2.27   1.09 0.96 6.49 
Influent AOB × 105 mL-1 0.81   0.57 0.53 5.43 

±denotes standard deviation across 204 days, 102 samples 

Table IV. 7. Summary of biotic conditions within Control CSTR’s (day 62 - 204). 

CSTR Control 1 Control 2 Control 3 Control 4 Control 5 Control 6 

Day 62 - 70                               

Abundance  Mean SD Min Max Sig Mean SD Min Max Sig Mean SD Min Max Sig Mean SD Min Max Sig Mean SD Min Max Sig Mean SD Min Max Sig 

ML Viruses × 108 mL-1* 2.72 0.62 1.90 3.64  
 T2

 C5  2.31 0.91 1.09 3.17  
 T2

   2.33 1.07 1.24 3.64  
 T2

   1.39 0.35 0.96 1.93  0.65 0.36 0.36 1.22  
 

 C5  0.84 0.26 0.57 1.18  
ML Bacteria × 107 mL-1 2.91 2.17 0.93 6.31  2.11 1.50 0.24 3.73  6.79 4.58 1.67 13.47  2.49 2.55 0.21 6.50  2.15 1.78 0.51 4.90  2.28 1.61 0.65 4.48  
ML AOB × 105 mL-1 1.29 1.21 0.37 3.36  0.90 0.35 0.40 1.22  2.33 2.56 0.50 6.74  0.80 0.79 0.19 2.15  0.98 0.83 0.32 2.42  0.67 0.10 0.56 0.81  

Day 72 - 204                               

ML Viruses × 108 mL-1* 1.47 0.59 0.50 3.57  
 T2 - T6

 C3 - C6  1.17 0.54 0.24 2.77  
 T2, T6

 C4 - C6  0.91 0.41 0.34 2.07  
 T2, T6

 C1   0.70 0.40 0.23 2.04  
 T1, T2 - T5

 C1, C2   0.71 0.47 0.23 2.61  
 T1, T2 - T5

 C1, C2   0.82 0.52 0.20 2.04  
 T1

 C1, C2  
ML Bacteria × 107 mL-1 2.16 4.32 0.03 24.61  1.62 3.39 0.08 23.70  2.55 4.38 0.00 24.42  1.26 1.40 0.01 6.87  1.67 2.18 0.02 10.37  1.82 3.24 0.01 19.69  
ML AOB × 105 mL-1* 0.96 1.25 0.02 6.59  1.17 1.61 0.03 8.27  2.31 4.07 0.01 21.16  

 T2, T5 T6

 C5   1.41 3.21 0.01 19.02  
 T4

   1.33 2.85 0.04 17.07  
 

 C5  1.11 1.48 0.03 8.79  
Day 62 - 204                               

D1 191.9 58.6 95.9 318.1  
T2, T3, T5, T6

C5   171.5 38.9 59.2 252.0  
T5, T6

   168.7 54.4 56.9 282.7  
T5, T6

   179.7 78.2 67.1 418.8  
T5, T6

   152.2 62.0 38.6 299.9  
T5

C1  177.7 56.5 70.5 317.9  
T5, T6

   

D2 89.9 32.7 24.4 157.1  
T2, T3, T5, T6

C5  77.3 26.9 12.5 131.4  
T5, T6

   79.4 29.8 15.6 149.2  
T5, T6

   79.1 38.8 23.0 227.6  
T5, T6

   67.7 31.1 11.9 142.1  
T5

C1  82.9 34.7 26.9 160.2  
T5, T6

   

n = 5 (day 62 – 72) and 67 (72 – 204), SD = standard deviation, min and max = minimum and maximum value. * Significantly different between CSTR’s and from corresponding CSTR (Sig) at the 0.05 level. Anderson-Darling and 

Bartlett Test P < 0.05 for all comparisons.  n = 66 due to missingness in bacteria and AOB data, except for ML bacteria in C6 (n = 65) and C3 (n = 64). 

 

Table IV. 8. Summary of biotic conditions within Test CSTR’s (day 62 - 204). 

CSTR Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 

Day 62 - 70                               

Abundance  Mean SD Min Max Sig Mean SD Min Max Sig Mean SD Min Max Sig Mean SD Min Max Sig Mean SD Min Max Sig Mean SD Min Max Sig 

ML Viruses × 108 mL-1* 1.31 1.08 0.28 2.98  0.46 0.07 0.39 0.56  
 T4

 C1 - C3  1.00 0.36 0.67 1.59  2.43 0.86 1.40 3.58  0.99 0.32 0.67 1.38  0.68 0.27 0.50 1.16  
ML Bacteria × 107 mL-1 3.55 2.72 0.99 7.10   0.94 1.63 3.73  3.01 2.41 0.90 6.91  1.31 1.38 0.25 3.05  3.18 2.28 1.36 7.11  4.60 3.78 1.09 9.99  
ML AOB × 105 mL-1 0.71 0.33 0.22 1.11   0.50 0.47 1.67  1.12 0.83 0.10 2.31  0.88 0.86 0.11 2.05  1.01 1.04 0.23 2.79  0.59 0.31 0.11 0.84  

Day 72 - 204                               

ML Viruses × 108 mL-1* 1.11 0.57 0.20 2.85  
 T2, T6

 C4 - C6 0.65 0.30 0.27 1.46  
 T3 - T5

 C1 - C3  1.12 0.70 0.33 3.27  
 T2, T6

 C1, C4, C5 1.00 0.40 0.43 2.31  
 T2, T6

 C1, C4, C5 1.00 0.51 0.21 2.43  
 T2

 C1, C4, C5 0.58 0.29 0.16 1.26  
 T1, T3, - T5

 C1, C2, C3   

ML Bacteria × 107 mL-1 1.23 1.43 0.04 5.86  2.18 3.28 0.01 21.42  1.93 2.58 0.00 17.17  1.92 3.49 0.00 21.02  1.44 2.26 0.01 14.99  1.87 3.17 0.01 20.62  

ML AOB × 105 mL-1* 1.23 1.49 0.03 6.56  0.70 0.94 0.02 4.34  
 T4

 C3  1.86 4.07 0.04 22.66  2.26 3.46 0.01 21.82  
 T2, T5

 C3   0.77 0.95 0.01 4.66  
 T4

 C3  0.80 0.98 0.02 5.12  
 T4

   

Day 62 - 204                               

D1 153.7 49.6 55.5 280.3  
T6

   156.2 78.9 19.6 340.7  
T6

C1  144.2 47.6 44.0 299.2  
T6

C1  168.7 56.5 21.1 291.2  
T5, T6

   131.8 59.3 47.4 278.5  
T4

C1:C6  109.7 47.7 40.1 291.6  
T1:T4

C1:C4, C6  

D2 72.3 32.4 15.4 147.2  
T6

   69.7 42.0 5.8 173.3  
T6

C1  61.4 26.8 8.2 161.9  
T6

C1  76.5 33.5 4.8 168.1  
T5, T6

   54.5 33.0 12.5 136.3  
T4

C1:C6  41.6 21.4 14.1 126.7  
T1:T4

C1:C4, C6  

n = 5 (day 62 – 72) and 67 (72 – 204), SD = standard deviation, min and max = minimum and maximum value. * Significantly different between CSTR’s and from corresponding CSTR (Sig) at the 0.05 level. Anderson-Darling and 

Bartlett Test P < 0.05 for all comparisons.  n = 66 due to missingness in bacteria and AOB data, except for ML bacteria in T4 and T5 (n = 65). 
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Table IV. 9. ML virus linear mixed-effects model. 

Correlation Structure Estimate (Phi) 
95% CI's  
(min, max) 

P-Value 
    

Continuous AR(1) ~Day|Reactor 0.8752334 0.85, 0.90 < 0.0001 ***    

Random Effect ~1|Reactor 
Estimate 
(Intercept) 

95% CI's  
(min, max) 

Residual 
95% CI's  
(min, max)    

Reactor 0.1044857 0.06, 0.19 0.216438 0.20, 0.24    

Coefficient Estimate SE t-Value VIF 
95% CI's  
(min, max) 

P-Value  

Intercept 8.699633 0.3359819 25.893250 NA 8.05, 9.36 < 0 x 10-4 *** 
Influent Calcium -0.014279 0.0061565 -2.319392 1.01 -0.03, -0.00 0.0206 * 
ML SS 0.014676 0.0043358 3.384794 1.01 0.01, 0.02 0.0007 *** 
ML Bacteria 0.030969 0.0086346 3.586611 1.02 0.01, 0.05 0.0004 *** 
Effluent Nitrate -0.196696 0.0658093 -2.988878 2.63 -0.33, -0.07 0.0029 ** 
ML pH 0.065139 0.0125068 5.208276 1.14 0.04, 0.09 < 0 x 10-4 *** 
HRT -0.015949 0.0039751 -4.012202 1.01 -0.02, -0.01 0.0001 *** 
Effluent Chloride 0.036196 0.0111755 3.238831 2.42 0.01, 0.06 0.0012 ** 

All measured biological, operational and environmental variables included as covariates, Ki = 51, n = 847, R2 = 0.30. Anderson-Darling Test p 

= 0.05081 for fixed effects and p = 0.7303 for random effect. All VIF scores < 3. SE = standard error. CI = confidence interval.  ANOVA P-
Value comparing models with identical fixed and random effects but with and without correlation structure. ° P < 0.1, * P < 0.05, ** P < 0.01, 
*** P < 0.001. 

 

 

 

 

Figure IV. 4. Diagnostic plots assessing linearity (A, B), homoscedasticity (B, C), residual normality (D, E) and residual independence (F, G) of 
the ML virus linear mixed-effects model. 
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Table IV. 10. Summary of CCA analysis. 

 CCA Axis     

 1 2 3 4     

Eigenvalue 0.33740 0.18679 0.14861 0.11414     
Species-Environment Correlation 0.9225150 0.8773796 0.8096894 0.7780930     
Cumulative Percentage Variance         

Of Species-Environment Relationship 27.66 42.97 55.15 64.50     

Permutation Test (Axis)         

F ratio 21.4672 11.8833 9.4548 7.2617     
P-Value < 0.001*** < 0.001*** < 0.001*** < 0.001***     

 Explanatory Variable 

 ML pH 
ML 
Temperature 

Influent 
Silicon 

ML DO 
Influent 
Potassium 

ML Virus 
Effluent 
Chloride 

Influent 
Virus 

Permutation Test (Marginal Effect)         
F ratio 6.4902 7.7511 5.3143 5.7537 4.1553 5.2868 3.3403 4.2046 
P-Value < 0.001*** < 0.001*** < 0.001*** < 0.001*** < 0.001*** < 0.001*** < 0.001*** < 0.001*** 

Intraset Correlation Coefficient         
Axis 1 -0.82154 -0.63896 -0.59534 0.25438 0.240788 -0.36994 -0.03044 -0.2383 
Axis 2 -0.35612 0.531503 0.22845 -0.20089 0.548216 -0.01439 0.100166 -0.13418 
Axis 3 -0.12849 -0.23138 0.442727 0.013952 -0.18362 0.156203 -0.48985 -0.27078 
Axis 4 0.257979 -0.43915 0.099615 0.750875 0.234694 0.204397 0.044868 0.120185 

VIF 2.48 1.80 1.73 1.43 1.81 1.32 1.45 2.31 

All measured biological, operational and environmental variables included as explanatory variables except ML Bacteria and AOB, n = 847. 
Global permutation test F ratio = 5.5443, P -Value <0.001***. Influent manganese and magnesium and effluent nitrate removed due to VIF 

scores > 3.  CCA axis 5 and 6 also significant, P < 0.01 and P < 0.05 respectively. * P < 0.05, ** P < 0.01, *** P < 0.001. 

 

Table IV.10. Continued. 

 Explanatory Variable 

 Influent Lead 
Influent 
Aluminium 

Influent 
Nickel 

ML SS 
Effluent 
Phosphate 

Influent 
Copper 

Permutation Test (Marginal Effect)       
F ratio 3.0639 2.9808 4.5291 2.5676 2.0890 2.6844 
P-Value < 0.001*** < 0.001*** < 0.001*** < 0.001*** < 0.001*** < 0.001*** 

Intraset Correlation Coefficient       
Axis 1 -0.48691 -0.29001 -0.11167 0.108932 0.259385 -0.36607 
Axis 2 -0.12983 -0.56522 0.35392 -0.09087 0.488573 -0.27086 
Axis 3 0.183579 0.173983 0.439977 -0.15871 0.126702 0.129729 
Axis 4 -0.1484 -0.21664 -0.06761 0.03712 0.028471 -0.13441 

VIF 1.90 2.63 1.68 1.05 1.48 2.73 

 

 

 

Table IV. 11. Abiotic similarity statistics for each CSTR pair. 

CSTR C1 C2 C3 C4 C5 C6 T1 T2 T3 T4 T5 T6 

Control 1 0.000 0.091 0.132 0.038 0.080 0.094 0.026 0.108 0.022 0.034 0.022 0.013 
Control 2 0.221 0.000 0.013 0.014 0.010 0.011 0.050 0.015 0.042 0.028 0.035 0.027 

Control 3 0.290 0.006 0.000 0.035 0.009 0.010 0.070 0.019 0.070 0.043 0.056 0.047 
Control 4 0.010 0.006 0.273 0.000 0.014 0.018 0.025 0.030 0.015 0.007 0.016 0.007 
Control 5 0.080 0.027 0.059 0.177 0.000 0.005 0.042 0.012 0.036 0.021 0.030 0.024 
Control 6 0.033 -0.004 0.064 0.031 0.116 0.000 0.045 0.010 0.038 0.025 0.030 0.026 
Test 1 0.073 0.096 0.059 0.126 0.033 0.108 0.000 0.057 0.013 0.018 0.017 0.014 
Test 2 0.223 0.151 0.056 0.093 0.107 0.131 0.014 0.000 0.045 0.045 0.040 0.034 
Test 3 0.000 0.172 0.039 0.012 0.072 0.157 0.068 0.148 0.000 0.016 0.003 0.003 
Test 4 0.009 0.057 0.101 0.075 0.019 0.042 0.002 0.172 0.121 0.000 0.016 0.011 
Test 5 0.038 0.147 0.078 0.107 0.078 0.132 0.014 0.056 0.026 0.022 0.000 0.004 
Test 6 0.179 0.110 0.129 0.097 0.018 0.098 0.128 0.154 0.083 0.032 -0.004 0.000 

ANOSIM R statistic and Adonis R2 statistic shown in lower left and upper right portion of table respectively, Bonferroni corrected P > 0.05 

for all CSTR pairs for both analyses. n = 72. 
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Table IV. 12. Functional synchrony of each CSTR pair. 

CSTR C1 C2 C3 C4 C5 C6 T1 T2 T3 T4 T5 T6 

Control 1 1 0.61 0.62 0.64 0.53 0.61 0.58 0.49 0.64 0.58 0.52 0.55 

Control 2 0.69 1 0.69 0.67 0.58 0.64 0.51 0.64 0.61 0.58 0.57 0.59 

Control 3 0.80 0.77 1 0.72 0.57 0.66 0.61 0.6 0.63 0.58 0.65 0.68 

Control 4 0.71 0.75 0.74 1 0.68 0.78 0.70 0.68 0.71 0.69 0.71 0.78 

Control 5 0.67 0.63 0.67 0.8 1 0.77 0.69 0.74 0.71 0.66 0.70 0.60 

Control 6 0.68 0.62 0.69 0.73 0.68 1 0.75 0.80 0.75 0.72 0.71 0.77 

Test 1 0.51 0.38 0.51 0.55 0.52 0.57 1 0.69 0.75 0.79 0.74 0.76 

Test 2 0.49 0.47 0.59 0.56 0.58 0.58 0.55 1 0.74 0.7 0.73 0.67 

Test 3 0.58 0.57 0.62 0.70 0.67 0.66 0.67 0.78 1 0.78 0.75 0.75 

Test 4 0.38 0.36 0.52 0.51 0.43 0.44 0.67 0.65 0.68 1 0.68 0.75 

Test 5 0.55 0.63 0.72 0.71 0.68 0.64 0.62 0.75 0.69 0.69 1 0.69 

Test 6 0.61 0.60 0.65 0.73 0.66 0.64 0.66 0.63 0.70 0.58 0.76 1 

Synchronicity coefficients for effluent CODs and NH4
+ - N, lower left and upper right portion of table respectively. n = 72. Synchrony 

coefficients > 0.60 are coloured light blue. 

Table IV. 13. Biotic synchrony of each CSTR pair. 

CSTR C1 C2 C3 C4 C5 C6 T1 T2 T3 T4 T5 T6 C1 C2 C3 C4 C5 C6 T1 T2 T3 T4 T5 T6 

 A B 

Control 1 1 0.66 0.53 0.21 0.45 0.56 0.76 0.42 0.58 0.30 0.82 0.61 1            
Control 2 0.09 1 0.77 0.37 0.60 0.63 0.57 0.58 0.55 0.34 0.54 0.53 0.60 1           
Control 3 0.14 0.56 1 0.33 0.60 0.6 0.63 0.70 0.67 0.23 0.53 0.5 0.55 0.73 1          
Control 4 0.11 0.21 0.59 1 0.45 0.1 0.11 0.27 0.29 0.52 0.04 0.28 0.41 0.67 0.64 1         
Control 5 0.06 0.29 0.47 0.57 1 0.6 0.43 0.46 0.57 0.48 0.43 0.42 0.41 0.64 0.59 0.54 1        
Control 6 -0.10 0.06 0.50 0.64 0.46 1 0.52 0.46 0.38 0.24 0.56 0.44 0.32 0.60 0.42 0.54 0.46 1       
Test 1 0.13 0.13 0.45 0.48 0.25 0.49 1 0.66 0.66 0.23 0.78 0.56 0.63 0.68 0.55 0.54 0.49 0.52 1      
Test 2 -0.26 -0.15 0.24 0.46 0.47 0.71 0.31 1 0.57 0.35 0.5 0.44 0.54 0.61 0.60 0.42 0.52 0.43 0.60 1     
Test 3 0.03 0.11 0.28 0.69 0.60 0.62 0.31 0.43 1 0.43 0.61 0.57 0.33 0.59 0.54 0.50 0.68 0.47 0.59 0.59 1    
Test 4 0.33 0.45 0.27 -0.09 -0.13 -0.16 0.11 -0.42 -0.25 1 0.33 0.38 0.33 0.64 0.50 0.55 0.54 0.45 0.46 0.29 0.60 1   
Test 5 -0.12 0.02 0.23 0.48 0.57 0.32 0.05 0.54 0.41 -0.20 1 0.64 0.44 0.60 0.51 0.50 0.60 0.53 0.74 0.67 0.76 0.48 1  
Test 6 0.00 0.34 0.54 0.45 0.34 0.19 0.32 0.19 0.23 -0.04 0.36 1 0.42 0.62 0.52 0.37 0.40 0.45 0.48 0.37 0.43 0.55 0.50 1 

Synchronicity coefficients for ML virus (n = 72), bacteria (n = 66) and AOB (n = 71) abundance, lower left, upper right (A) and lower left (B) 

portion of table respectively. Synchrony coefficients > 0.60 are coloured light blue. 

 

Figure IV. 5. Functional (A), total abundance (B), α diversity (C) and β diversity (D) synchrony across all CSTR’s from day 62 onwards. Dashed 
lines represent overall mean synchrony coefficients for each component. 
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Table IV. 14. Microbial community similarity statistics for each CSTR pair. 

CSTR C1 C2 C3 C4 C5 C6 T1 T2 T3 T4 T5 T6 
Control 1 0.000 0.065 0.046 0.054 0.109 0.072 0.105 0.117 0.125 0.059 0.156 0.232 
Control 2 0.174 0.000 0.076 0.066 0.087 0.067 0.090 0.099 0.103 0.083 0.125 0.194 
Control 3 0.101 0.177 0.000 0.069 0.124 0.082 0.119 0.132 0.143 0.061 0.180 0.256 
Control 4 0.210 0.241 0.373 0.000 0.076 0.069 0.096 0.099 0.098 0.072 0.125 0.192 
Control 5 0.150 0.191 0.294 0.463 0.000 0.056 0.074 0.071 0.078 0.126 0.074 0.136 
Control 6 0.173 0.143 0.402 0.300 0.149 0.000 0.064 0.077 0.089 0.085 0.100 0.170 
Test 1 0.197 0.338 0.287 0.208 0.191 0.579 0.000 0.055 0.052 0.109 0.071 0.111 
Test 2 0.358 0.258 0.179 0.259 0.399 0.415 0.184 0.000 0.052 0.124 0.062 0.093 
Test 3 0.243 0.360 0.214 0.119 0.243 0.646 0.148 0.648 0.000 0.126 0.061 0.091 

Test 4 0.393 0.287 0.128 0.115 0.339 0.401 0.139 0.853 0.557 0.000 0.165 0.236 
Test 5 0.208 0.200 0.420 0.139 0.392 0.187 0.592 0.590 0.321 0.250 0.000 0.094 
Test 6 0.218 0.162 0.304 0.223 0.404 0.318 0.794 0.419 0.252 0.771 0.253 0.000 

ANOSIM R statistic and Adonis R2 statistic shown in lower left and upper right portion of table respectively, Bonferroni corrected P > 0.05 
for all CSTR pairs for both analyses. 

 

Table IV. 15. Community concordance among CSTR’s. 

CSTR C1 C2 C3 C4 C5 C6 T1 T2 T3 T4 T5 T6 

Control 1 0.00            
Control 2 0.39 0.00           
Control 3 0.29 0.32 0.00          
Control 4 0.16 0.43 0.17 0.00         
Control 5 0.49 0.19 0.31 0.49 0.00        
Control 6 0.46 0.20 0.42 0.53 0.24 0.00       
Test 1 0.39 0.25 0.19 0.31 0.23 0.31 0.00      
Test 2 0.62 0.31 0.53 0.61 0.45 0.43 0.46 0.00     
Test 3 0.63 0.38 0.51 0.59 0.45 0.47 0.54 0.46 0.00    
Test 4 0.62 0.45 0.48 0.54 0.41 0.50 0.50 0.56 0.14 0.00   
Test 5 0.44 0.16 0.41 0.51 0.25 0.21 0.27 0.32 0.46 0.55 0.00  
Test 6 0.55 0.28 0.42 0.53 0.25 0.35 0.36 0.47 0.58 0.58 0.31 0.00 

m2 values from concordance analysis, P < 0.001 for all CSTR pairs. 

 

Table IV. 16. β diversity synchrony of each CSTR pair. 

CSTR C1 C2 C3 C4 C5 C6 T1 T2 T3 T4 T5 T6 C1 C2 C3 C4 C5 C6 T1 T2 T3 T4 T5 T6 

 A B 

Control 1 1 0.07 0.11 0.06 0.1 0.03 0.15 0.25 0.22 0.16 0.2 0.31 1            
Control 2 -0.02 1 0.14 -0.18 0.07 0.15 0.11 0.24 0.24 0.03 0.14 -0.08 0.3 1           
Control 3 -0.1 0.28 1 -0.09 -0.16 -0.06 0.13 0.1 -0.12 0.08 0.18 -0.02 0.2 0.23 1          
Control 4 0.22 0.12 0.05 1 0.13 0.06 0.06 -0.15 0.05 0.2 -0.03 0.15 0.14 0.14 0.24 1         
Control 5 0.07 0 -0.04 0.16 1 0.38 0.13 0.15 0.25 -0.06 0.04 0.24 0.22 0.46 0.3 0.25 1        
Control 6 -0.18 0.03 -0.07 0.19 0.35 1 0.05 0.25 -0.04 -0.28 0.03 0.1 0.06 0.29 0.29 -0.03 0.42 1       
Test 1 0.17 0 -0.02 0.06 0.05 -0.15 1 0.18 0.31 -0.13 0.33 0.22 0.08 0.08 0.07 -0.02 0.03 -0.11 1      
Test 2 -0.09 0.01 0.21 0.04 0 0.16 -0.2 1 0.26 0.01 0.06 0.11 0.41 0.34 0.02 0.01 0.09 0.19 0.18 1     
Test 3 0.21 0.16 -0.16 0.1 0.21 -0.06 0.11 0.05 1 0.01 0.18 0.18 0.34 0.39 0.08 0.12 0.18 0.04 0.34 0.41 1    
Test 4 0.03 0.06 0.14 0.13 0 -0.12 -0.1 0.04 -0.13 1 0.11 -0.07 0.13 0.24 -0.07 0.33 0.11 -0.06 0.26 0.33 0.45 1   
Test 5 0.12 0.05 0.11 0.16 0.13 0.14 -0.01 -0.06 0.02 -0.02 1 0.04 0.21 0.44 0.03 0.24 0.44 0.27 0.36 0.31 0.45 0.53 1  
Test 6 0.22 -0.19 0.05 0.19 0.33 0.16 0.11 0.02 0.06 0.12 -0.02 1 0.11 0.22 0.03 0.27 0.09 -0.14 0.26 0.19 0.4 0.46 0.18 1 

Synchronicity coefficients for βsor-nes, βsor-tur and βBC, lower left, upper right (A) and lower left (B) portion of table respectively. Synchrony 

coefficients > 0.60 are coloured light blue. 

 

Table IV. 17. α diversity synchrony of each CSTR pair. 

CSTR C1 C2 C3 C4 C5 C6 T1 T2 T3 T4 T5 T6 

Control 1 1 0.52 0.71 0.69 0.59 0.26 0.02 0.28 0.38 0.33 0.54 0.39 

Control 2 0.27 1 0.62 0.56 0.4 0.37 0.27 0.39 0.23 0.39 0.32 0.28 

Control 3 0.47 0.3 1 0.74 0.59 0.5 0.36 0.57 0.43 0.38 0.5 0.42 

Control 4 0.41 0.13 0.61 1 0.31 0.21 0.04 0.39 0.32 0.16 0.34 0.27 

Control 5 0.44 0.15 0.53 0.18 1 0.58 0.36 0.42 0.4 0.43 0.59 0.51 

Control 6 0.17 0.23 0.38 0.07 0.46 1 0.42 0.47 0.21 0.24 0.23 0.36 

Test 1 -0.26 0.28 0.06 -0.25 0.07 0.32 1 0.62 0.3 0.32 0.24 0.17 

Test 2 -0.13 0.29 0.34 0.18 0.23 0.35 0.55 1 0.43 0.28 0.28 0.05 

Test 3 0.04 0.25 0.06 -0.13 0.18 0.09 0.43 0.39 1 0.5 0.42 0.38 

Test 4 -0.01 0.22 0 -0.27 0.23 0.14 0.23 0.08 0.44 1 0.4 0.27 

Test 5 0.28 0.07 0.39 0.19 0.42 0.09 0.12 0.21 0.27 0.21 1 0.19 

Test 6 0.28 0.24 0.33 -0.01 0.41 0.25 0.12 0.09 0.29 0.26 0.07 1 

Synchronicity coefficients for D1 and D2 diversity indices, upper right and lower left portion of table respectively. Synchrony coefficients > 

0.60 are coloured light blue.  
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Figure IV. 6. Temporal β diversity trajectories across all CSTR’s from day 62 onwards. Dashed line represents the end of acclimatisation. (A 
– F) Control 1 – 6. (G – L) Test 1 – 6. 
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Figure IV. 7. hed line represents the end of acclimatisation. (A 

– F) Control 1 – 6. (G – L) Test 1 – 6. 
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APPENDIX V 
SUPPLEMENTARY INFORMATION - EVIDENCE OF PREDATOR-PREY DYNAMICS 

BETWEEN BACTERIOPHAGE AND AMMONIA OXIDISING BACTERIA IN AN 

ENGINEERED MICROBIAL SYSTEM 
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V.1. Supplementary Theory 

V.1.1. Extension of LV Equations 

Rearranging Eq. 5.1 and taking its first derivative by applying the chain rule gives,  

𝑑𝑥

𝑑𝑡
= 𝑥(𝜇 − 𝜑𝑉) ,                                                                                                                                   𝐸𝑞. 𝑉1 

          

1

𝑥

𝑑𝑥

𝑑𝑡
= 𝜑 ( 

𝜇

𝜑
− 𝑉)  ,                                                                                                                                𝐸𝑞. 𝑉2 

  

𝑑𝑓(𝑥(𝑡))

𝑑𝑡
=

𝑑𝑓

𝑑𝑥

𝑑𝑥

𝑑𝑡
 ,                                                                                                                                 𝐸𝑞. 𝑉3 

         

𝑑 ln𝑥

𝑑𝑡
=

𝑑 ln(𝑥)

𝑑𝑥

𝑑𝑥

𝑑𝑡
 .                                                                                                                               𝐸𝑞. 𝑉4 

         

However 

𝑑 ln(𝑥)

𝑑𝑥
=

1

𝑥
 ,                                                                                                                                             𝐸𝑞. 𝑉5 

and so  

𝑑 ln𝑥

𝑑𝑡
=

𝑑 ln(𝑥)

𝑑𝑥

𝑑𝑥

𝑑𝑡
=

1

𝑥

𝑑𝑥

𝑑𝑡
 .                                                                                                                 𝐸𝑞. 𝑉6 

Thus the first derivative of Eq. V2 is,  

𝑑 ln(𝑥)

𝑑𝑡
= 𝜑 ( 

𝜇

𝜑
− 𝑉) .                                                                                                                           𝐸𝑞. 5.3 

Similarly Eq. 5.2 can be rearranged and its first derivative taken,  

𝑑 ln(𝑉)

𝑑𝑡
= −𝛿 (

𝑚

𝛿
− 𝑥) .                                                                                                                        𝐸𝑞. 5.4 

V.1.2. More complex models 

More complex models are conceivable to take account of bacterial and viral loss (Campbell, 1961). 

However as such expressions would be a constant multiplied by prey or virus abundance these terms 
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would disappear by the second differentiation. For example if α were the bacterial growth rate (time-

1) and mcrt were the mean cell retention time then, 

𝑑𝑥

𝑑𝑡
= 𝛼𝑥 − 𝜑𝑥𝑉 −

1

𝑚𝑐𝑟𝑡
𝑥 .                                                                                                                   𝐸𝑞. 𝑉7 

The first and second differentials would be, 

𝑑 ln(𝑥)

𝑑𝑡
= 𝜑 ( 

𝛼

𝜑
−

1

𝜑𝑚𝑐𝑟𝑡
− 𝑉)  ,                                                                                                        𝐸𝑞. 𝑉8 

         

𝑑2 ln(𝑥)

𝑑𝑡
= −𝜑

𝑑𝑉

𝑑𝑡
 .                                                                                                                                𝐸𝑞. 𝑉9 

Which is equal to Eq. 5.5 and thus the prediction still stands. 

Moreover the time delay between prey infection and death introduced in Campbell’s (1961) model 

may be ignored if the time steps are larger than the time taken for cell lysis, a likely situation here. 

V.1.3. AOB Mortality and Growth 

Using the slope of the SMA regression analysis (Table. 5.1) we can obtain 𝜑, -2.95 × 10-9 week-1, and 𝛿, 

-6.34 × 10-8 week-1, virus lysis and replication rates respectively. Thus using 𝜑 and the geometric mean 

of 𝑉  ( 1.195 ×  109  viruses mL-1) we can obtain the typical mortality rate of AOB due to virus 

predation(𝜑𝑉) , as well as minimum (𝜑𝑉𝑚𝑖𝑛 ) and maximum (𝜑𝑉𝑚𝑎𝑥 ) rates using minimum and 

maximum values of 𝑉 (0.318 ×  109 and 3.407 ×  109 viruses mL-1 respectively). Moreover negating 

(¬) 𝜑𝑉  and considering a mcrt of 11.1 ± 3.1 days (determined across the two years) 𝜇  can be 

estimated for AOB (Eq. V10).  

𝜇 =
1

𝑚𝑐𝑟𝑡
+ ¬𝜑𝑉.                                                                                                                                  𝐸𝑞. 𝑉10  
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APPENDIX VI 
SUPPLEMENTARY INFORMATION - A WASTEWATER PERSPECTIVE ON VIRAL 
AND MICROBIAL ABUNDANCES AND VIRUS-MICROBE RATIOS 
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VI.1. Supplementary Results 

 

Table VI. 1. Virus and bacterial densities per g of suspended solids within 95% quantiles. 

 Median (1011 g -1) Minimum (1010 g -1) Maximum (1011 g -1) 

Virus    

     ML FSa  4.77 6.17 13.19 
     Inf FSb 0.52 1.00 1.53 

     ML CSTRc 9.53 20.4 77.97 

Bacteria    

     ML FSa  1.30 2.21 3.99 
     Inf FSb 0.06 0.02 0.38 

     ML CSTRc 1.02 0.70 13.81 

Values calculated from virus and bacterial abundance per millilitre and the SS data (not shown). n = 102a, 95b, 847c. ML = Mixed Liquor, 
Inf = Influent, FS = Full Scale, CSTR = Continuously Stirred Tank Reactor 

 

 

Table VI. 2. Linear regression models of virus and bacterial abundance. 

System Intercept Intercept 95% 
CI (min, max) 

Estimate Estimate 95% 
CI (min, max) 

P-value  

ML FSa  9.134343 8.21, 10.06 -0.006707 -0.12, 0.10 0.903  

Inf FSb 9.04257 8.49, 9.59 -0.13249 -0.21, -0.05 0.001 ** 

ML C1c 7.85153 7.35, 8.35 0.04384 -0.03, 0.12 0.233  

ML C2c 7.66341 6.96, 8.36 0.05506 -0.05, 0.16 0.285  

ML C3e 7.21249 6.67, 7.76 0.10413 0.93, 0.18 0.009 ** 

ML C4c 8.00629 7.40, 8.62 -0.03010 -0.12, 0.06 0.505  

ML C5c 6.40573 5.81, 7.00 0.19819 0.11, 0.28 < 1.77 x 10-5 
 

*** 

ML C6d 6.29583 6.96, 8.36 0.22476 -0.05, 0.16 < 1.53 x 10-6 
 

*** 

ML T1c 7.03787 6.33, 7.75 0.13913 0.04, 0.24 0.009 ** 

ML T2c 6.78831 6.37, 7.20 0.14042 0.08, 0.20 < 1.15 x 10-5 
 

*** 

ML T3c 7.2470 6.61, 7.88 0.1035 0.01, 0.19 0.025 * 

ML T4d 7.86073 7.42, 8.30 0.02011 -0.04, 0.08 0.535  

ML T5d 7.76092 7.09, 8.43 0.02641 -0.07, 0.12 0.592  

ML T6c 7.682407 7.11, 8.25 0.005262 -0.08, 0.09 0.898  

ML CSTRf 7.35230 7.16, 7.54 0.08106 0.05, 0.11 < 8.82 x 10-9 
 

*** 

Allg 5.88830 5.67, 6.08 0.30540 0.28, 0.33 < 2.2 x 10-16 
 

*** 

n = 102a, 95b, 91c, 70d, 69e, 847f and 1044g. CI = Confidence Intervals, ML = Mixed Liquor, Inf = Influent, FS = Full Scale, CSTR = 
Continuously Stirred Tank Reactor, C = Control, T = Test. ° P < 0.1, * P < 0.05, ** P < 0.01, *** P < 0.001. 

 

 

Table VI. 3. Linear regression model of VMR’s and bacterial abundance. 

System Intercept Intercept 95% 
CI (min, max) 

Estimate Estimate 95% 
CI (min, max) 

P-value  

All  5.88830 -0.72, -0.67 -0.69460 5.69, 6.09 < 2.2 x 10-16 
 

*** 

n = 1044. CI = Confidence Intervals. ° P < 0.1, * P < 0.05, ** P < 0.01, *** P < 0.001. 
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Figure VI. 1. Virus-bacteria relationships in all 12 (A – L) lab scale systems as determined by individual linear regression models. Blue 
solid lines denote best fit linear regression for each system and dashed light blue line depicts a 10:1 linear relationship.
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APPENDIX VII 
SUPPLEMENTARY INFORMATION - PRELIMINARY METAGENOMIC 

CHARACTERISATION OF WASTEWATER VIRUSES  
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VII.1. Supplementary Methods 

To the best of our knowledge all current assembly-based metagenomic analysis methods, whether 

on viral enriched or bacterial samples respectively, rely heavily on post processing of assembled 

contigs. Yet for viral metagenomes (viromes) in particular such an approach discards a hugely rich 

source of additional information, namely the intermediate assembly graph structure. As an 

example two circular, virus like chromosomes (~ 38 kb each) discovered in the effluent free virome 

were isolated in Bandage (Fig. VII. 1). The left chromosome (Fig. VII. 1 A) is presented as a single 

entry in the kmer graph and thus constitutes a single contig in the final assembly. In contrast the 

right chromosome (Fig. VII. 1 B), which is clearly circular and complete (barring assembly errors), 

would represent two long (~ 15 kb each) and four short (~ 2 kb each) unrelated contigs. This arises 

because the four short contigs, small regions of heterogeneity in the chromosome (top and 

bottom Fig. VII. 1 B), represent two possible branches that the contig building algorithm has to 

choose between, as they are similar in depth (reads mapping to each pathway) it halts building 

and splits up the “single” chromsosome.  

 

Figure VII.  1. Assembly graph of two viral like chromosomes discovered in the effluent free virome, here both the single contig (A) 
and all the viral associated contigs (B) would be kept as two separate individual virus sub-graphs for future analysis.  

Such a network of related contigs (Fig. VII. 1 B) is likely formed by the presence and co-assembly 

of two highly related viruses, which only differ in nucleotide sequence at two points in the genome. 

Thus, the assembler produces the correct structures to fully describe an associated virus 

chromosome at an intermediate step, but is unable to fully capitalize on this information to 

produce a complete circular genome. We attempted to take advantage of the “correct” graph 

structure to enrich the virus-like content of the per-sample assemblies, thus both the left and right 

chromosome would be considered as individual virus sub-graphs and used in future analysis.  
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VII.2. Supplementary Results 

Table VII.  1. Summary of assembly statistics. 

 Wastewater Virome 

Inf Free ML Free ML Temp Eff Free 

Reads     
Raw 2092974 2373697 1644812 2875027 

Quality Trimmed 1334137 1386106 832684 1803162 

Contigs     

Total 308 6055 439 41512 
Max Length 67102 86159 206488 197766 
Mean Length 4791 2370 3840 1432 
n50 13388 4811 6563 2033 

Proteins     

Total 9906 92577 11311 348743 
Homologous Viral Proteins 924 7860 864 27274 

Individual Virus sub-graphs*     

Circular 2 11 3 19 
Total 18 60 14 192 

Reads Mapped to ISV’s 80704 353731 61800 770372 

*inclusive only of those sub-graph sequences > 20k bp.  i.e. “virus-only” reads. Inf = influent, Eff = effluent, Temp = temperate viruses, 

ISV’s = Individual Virus sub-graphs. 

Table VII.  2. Composition of wastewater viromes determined by similarity to known nucleotide sequences at the family level. 

Viral Type Viral Family Host 
Wastewater Virome 

Inf Free ML Free ML Temp Eff Free 

dsDNA Adenoviridae Eukarya 0.00 0.16 0.04 0.04 

 Alloherpesviridae Eukarya 0.03 1.37 4.34 0.00 

 Ascoviridae Eukarya 0.02 0.16 0.19 0.00 

 Baculoviridae Eukarya 0.07 0.66 1.58 0.08 

 Chrysoviridae Eukarya 0.00 0.06 0.00 0.00 

 Herpesviridae Eukarya 0.09 3.41 2.36 0.43 

 Iridoviridae Eukarya 0.05 0.00 0.13 0.00 

 Marseilleviridae Eukarya 0.00 0.03 0.00 0.00 

 Mimiviridae Eukarya 0.19 0.28 0.26 0.16 

 Myoviridae Bacteria, Archaea 54.17 27.55 1.88 24.60 

 Nudiviridae Eukarya 0.05 0.00 0.37 0.00 

 Papillomaviridae Eukarya 0.00 0.00 0.03 0.00 

 Partitiviridae Eukarya 0.64 1.16 0.46 2.78 

 Phycodnaviridae Eukarya 0.14 0.97 2.15 0.55 

 Pithoviridae Eukarya 0.00 0.06 0.14 0.00 

 Podoviridae Bacteria 4.73 5.56 2.29 12.24 

 Polydnaviridae Eukarya 0.17 3.09 14.48 0.20 

 Polyomaviridae Eukarya 0.00 0.03 0.01 0.00 

 Poxviridae Eukarya 0.14 0.56 0.97 0.20 

 Reoviridae Eukarya 0.00 0.00 0.03 0.00 

 Rudiviridae Archaea 0.02 0.00 0.00 0.00 

 Siphoviridae Bacteria, Archaea 18.83 37.14 1.59 47.83 

 Tectiviridae Bacteria 0.02 0.00 0.00 0.00 

 Totiviridae Eukarya 0.02 0.19 0.05 0.04 

ssDNA Anelloviridae Eukarya 0.00 0.00 0.01 0.00 

 Circoviridae Eukarya 0.00 0.22 0.02 0.00 

 Genomoviridae Eukarya 0.00 0.03 0.01 0.00 

 Microviridae Bacteria 4.58 0.66 0.14 2.11 

ssRNA Arenaviridae Eukarya 0.00 0.00 0.01 0.00 

 Astroviridae Eukarya 0.00 0.06 0.03 0.08 

 Bromoviridae Eukarya 0.05 0.56 0.94 0.35 

 Flaviviridae Eukarya 0.60 0.97 0.18 2.35 

 Hytrosaviridae Eukarya 0.00 0.00 0.02 0.00 

 Potyviridae Eukarya 0.02 0.06 0.02 0.08 

 Solinviviridae Eukarya 0.00 0.00 0.01 0.00 

 Togaviridae Eukarya 0.00 0.00 0.01 0.00 

 Virgaviridae Eukarya 0.02 0.06 0.01 0.08 

Total Number of Families  22 26 33 18 

Phylogenetic assignment of raw sequences was determined using Krakken (Wood and Salzberg, 2014) against the NCBI nt database. 
Inf = influent, Eff = effluent, Temp = temperate viruses.  
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Table VII.  3. Viral species present in all wastewater viromes and their relative abundance as determined by similarity to known 
nucleotide sequences. 

Viral Order Viral Family Viral Species 
Wastewater Virome 

Inf Free ML Free ML Temp Eff Free 

Caudovirales Myoviridae Acinetobacter virus AP22 0.26 0.84 0.06 4.58 

  Aeromonas phage vB_AsaM-56 43.12 22.93 0.62 10.36 

  Begomovirus 0.07 0.09 0.01 0.20 

  Caulobacter phage Cr30 0.12 0.25 0.14 2.15 

  Enterobacteria phage phi92 0.45 0.03 0.10 1.02 

  Enterobacteria phage T4 3.72 0.47 0.12 0.55 

  Iodobacteriophage phiPLPE 0.14 0.53 0.08 1.13 

  Klebsiella phage JD001 0.31 0.31 0.02 0.43 

  Spo1virus 0.52 0.37 0.19 1.76 

 Podoviridae Bacillus phage Stitch 0.38 0.47 0.17 1.41 

  Bordetella virus BPP1 0.10 0.62 0.03 0.82 

  Burkholderia virus Bcep22 0.17 1.06 0.08 1.49 

  Phikmvvirus 0.24 0.28 0.01 0.20 

  Rhodoferax phage P26218 0.21 0.31 0.03 0.27 

  Salmonella virus 9NA 0.15 0.84 0.09 1.29 

  unclassified N4likevirus 0.65 0.28 0.01 2.19 

 Siphoviridae Arthrobacter virus Mudcat 0.02 0.09 0.01 0.04 

  Azospirillum phage Cd 0.02 0.16 0.01 0.39 

  Cellulophaga phage phi10:1 0.19 0.06 0.02 0.55 

  Enterococcus phage IME_EF3 0.05 0.16 0.05 0.51 

  Escherichia virus K1g 0.53 0.72 0.01 0.08 

  Flavobacterium phage 11b 0.05 0.03 0.02 0.86 

  Gordonia phage Kita 0.03 0.06 0.01 0.55 

  Gordonia phage Wizard 0.09 0.47 0.05 1.02 

  Mycobacterium phage Dante 0.05 0.28 0.05 0.74 

  Mycobacterium phage Keshu 0.02 0.16 0.01 0.31 

  Mycobacterium phage PattyP 0.02 0.19 0.01 0.20 

  Mycobacterium virus Brujita 0.05 0.37 0.03 0.59 

  Mycobacterium virus Che9d 0.07 0.69 0.02 1.29 

  Polaribacter virus P12002S 0.17 0.19 0.15 2.27 

  Pseudomonas phage PS-1 0.17 0.09 0.05 0.63 

  Pseudomonas virus MP1412 0.84 2.00 0.01 1.25 

  Pseudomonas virus PaMx28 0.28 1.37 0.09 1.41 

  Pseudomonas virus PaMx74 1.58 4.47 0.25 5.87 

  Pseudomonas virus Yua 1.03 2.72 0.03 2.42 

  Stenotrophomonas phage S1 0.05 0.06 0.02 0.04 

  Verrucomicrobia phage P8625 0.05 0.56 0.04 0.20 

Herpesvirales Herpesviridae Simplexvirus 0.02 0.59 0.79 0.08 

  unassigned Betaherpesvirinae 0.02 0.22 0.09 0.12 

Microviridae Bullavirinae unclassified Phix174microvirus 4.58 0.66 0.14 2.07 

ssRNA Bromoviridae Spring beauty latent virus 0.03 0.25 0.02 0.27 

 Flaviviridae Hepacivirus C 0.59 0.97 0.17 2.35 

Total of "known" Virome 61.20 47.30 3.85 55.92 

Phylogenetic assignment of raw sequences was determined using Krakken (Wood and Salzberg, 2014) against the NCBI nt database. 

Inf = influent, Eff = effluent, Temp = temperate viruses. only classified to genus level. 
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Table VII.  4. Most abundant viral species in each wastewater virome and their relative abundance as determined by similarity to 
known nucleotide sequences. 

Viral Order Viral Family Viral Species Host 
Wastewater Virome 

Inf Free  ML Free  ML Temp  Eff Free  
Caudovirales Myoviridae Aeromonas phage vB_AsaM-56 Gammaproteobacteria  43.12  22.93  0.62  10.36  

  Enterobacteria phage T4 Gammaproteobacteria  3.72  0.47  0.12  0.55  

  Acinetobacter virus AP22 Gammaproteobacteria  0.26  0.84  0.06  4.58  

  Caulobacter phage Cr30 Alphaproteobacteria  0.12  0.25  0.14  2.15  

  Spo1virus Bacilli 0.52  0.37  0.19  1.76  

 Podoviridae unclassified N4likevirus Gammaproteobacteria  0.65  0.28  0.01  2.19  

  Burkholderia virus Bcep22 Betaproteobacteria  0.17  1.06  0.08  1.49  

  T7virus Gammaproteobacteria  0.09  0.28  1.74  0.00  

 Siphoviridae Pseudomonas virus PaMx74 Gammaproteobacteria  1.58  4.47  0.25  5.87  

  Pseudomonas virus Yua Gammaproteobacteria  1.03  2.72  0.03  2.42  

  Pseudomonas virus MP1412 Gammaproteobacteria  0.84  2.00  0.01  1.25  

  Pseudomonas virus PAE1 Gammaproteobacteria  0.71  1.06  0.00  0.94  

  Lactococcus phage 1706 Bacilli 0.55  0.00  0.00  0.00  

  Pseudomonas virus PaMx28 Gammaproteobacteria  0.28  1.37  0.09  1.41  

  Polaribacter virus P12002S Flavobacteria 0.17  0.19  0.15  2.27  
Herpesvirales Alloherpesviridae Ictalurid herpesvirus 1 Eukaryote 0.00  0.12  2.84  0.00  

  Cyprinid herpesvirus 3 Eukaryote 0.02  0.37  0.69  0.00  

  Cyprinid herpesvirus 1 Eukaryote 0.02  0.59  0.63  0.00  

 Herpesviridae Roseolovirus Eukaryote 0.00  1.00  0.12  0.04  

  Simplexvirus Eukaryote 0.02  0.59  0.79  0.08  

  Cytomegalovirus Eukaryote 0.02  0.03  0.59  0.00  

  Proboscivirus Eukaryote 0.00  0.12  0.52  0.00  
Microviridae Bullavirinae unclassified Phix174microvirus Gammaproteobacteria  4.58  0.66  0.14  2.07  
Phycodnaviridae Prymnesiovirus Phaeocystis globosa virus Eukaryote 0.00  0.62  1.82  0.12  
ssRNA  Bromoviridae Tomato aspermy virus Eukaryote 0.02  0.28  0.91  0.00  

 Flaviviridae Hepacivirus C Eukaryote 0.59  0.97  0.17  2.35  
Phylogenetic assignment of raw sequences was determined using Krakken (Wood and Salzberg, 2014) against the NCBI nt database. 

Inf = influent, Eff = effluent, Temp = temperate viruses. only classified to genus level. Top 10 most abundant species in each virome 
are coloured light blue. 

Table VII.  5. Functional composition of wastewater viromes. 

Protein Feature 
Wastewater Virome 

Inf Free ML Free ML Temp Eff Free 

Amino Acids and Derivatives 7.88 0.63 0.79 0.13 
Carbohydrates 11.29 0.21 0.22 0.05 

Cell Division and Cell Cycle 1.20 5.61 6.63 2.23 

Cell Wall and Capsule 4.31 10.00 11.21 1.97 

Clustering-based subsystems 13.20 5.18 5.92 2.37 

Cofactors, Vitamins, Prosthetic Groups, Pigments 5.78 2.23 2.25 1.17 

DNA Metabolism 5.39 3.19 3.17 0.59 

Dormancy and Sporulation 0.19 0.35 0.33 0.06 

Fatty Acids, Lipids, and Isoprenoids 2.56 0.81 0.76 0.22 

Iron acquisition and metabolism 0.94 2.25 2.69 2.15 

Membrane Transport 2.21 1.01 1.00 0.23 

Metabolism of Aromatic Compounds 0.84 5.96 6.58 2.33 

Miscellaneous 6.38 3.32 3.93 1.08 

Motility and Chemotaxis 1.23 14.93 7.89 59.25 

Nitrogen Metabolism 0.97 3.47 3.54 0.59 

Nucleosides and Nucleotides 2.78 0.13 0.13 0.03 

Phages, Prophages, Transposable elements, Plasmids 10.81 4.41 5.15 2.03 

Phosphorus Metabolism 0.82 2.06 2.33 0.33 

Photosynthesis 0.05 1.27 1.31 0.69 

Potassium Metabolism 0.33 8.27 9.26 1.37 

Protein Metabolism 6.64 5.35 5.10 8.33 

Regulation and Cell signaling 1.39 1.06 0.91 0.13 

Respiration 2.02 0.07 0.09 0.01 

RNA Metabolism 5.18 1.45 1.62 0.19 

Secondary Metabolism 0.22 0.71 0.73 0.15 

Stress Response 1.75 1.94 1.96 0.59 

Sulphur Metabolism 0.84 12.84 13.27 10.62 

Virulence, Disease and Defense 2.80 1.29 1.22 1.12 

Functional assignment of raw sequences was determined using MG-RAST (Keegan et al., 2016) against the SEED nr database. Inf = 
influent, Eff = effluent, Temp = temperate viruses. Top 5 most abundant functional categories in each virome are light blue. 
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Table VII.  6. Composition of wastewater viromes determined by similarity to known protein sequences at the family level. 

Viral Type Viral Family Host 
Wastewater Virome 

Inf Free ML Free ML Temp Eff Free 

dsDNA Circoviridae Eukarya 0.000 0.032 0.000 0.000 

 Lavidaviridae Viruses 0.000 0.000 0.000 0.001 

 Marseilleviridae Eukarya 0.230 0.000 1.362 0.692 

 Mimiviridae Eukarya 0.000 0.179 0.000 0.192 

 Myoviridae Bacteria, Archaea 26.256 14.169 55.933 39.077 

 Phycodnaviridae Eukarya 5.304 7.469 1.233 1.559 

 Pithoviridae Eukarya 0.000 0.000 0.000 0.005 

 Podoviridae Bacteria 14.213 13.760 3.265 8.855 

 Siphoviridae Bacteria, Archaea 36.973 34.515 7.280 20.188 

 Tectiviridae Eukarya 0.000 0.000 0.000 0.003 

ssDNA Iridoviridae Eukarya 0.000 0.000 0.000 0.006 

Total Number of Families  5 6 5 10 

Phylogenetic assignment of sequences was determined using BLASTP against the NCBI nr database. Inf = influent, Eff = effluent, Temp 
= temperate viruses.  

Table VII.  7. Functional composition of garnered “virus-only” reads. 

Protein Feature 
Wastewater Virome 

Inf Free ML Free ML Temp Eff Free 

Amino Acids and Derivatives 0.00 0.02 0.00 0.00 
Carbohydrates 0.00 0.11 0.00 0.21 

Cell Division and Cell Cycle 2.98 1.99 2.48 0.86 

Cell Wall and Capsule 0.00 0.46 0.03 0.48 

Clustering-based subsystems 6.17 7.67 4.66 9.10 

Cofactors, Vitamins, Prosthetic Groups, Pigments 0.38 0.27 10.21 1.43 

DNA Metabolism 5.48 9.14 10.81 6.54 

Dormancy and Sporulation 0.00 0.00 0.00 0.00 

Fatty Acids, Lipids, and Isoprenoids 0.00 0.08 0.00 0.13 

Iron acquisition and metabolism 0.00 0.00 0.00 0.00 

Membrane Transport 0.10 1.14 0.73 0.72 

Metabolism of Aromatic Compounds 0.00 0.00 0.00 0.01 

Miscellaneous 0.56 0.77 8.80 1.47 

Motility and Chemotaxis 0.18 0.35 0.70 0.09 

Nitrogen Metabolism 0.00 0.00 0.00 0.00 

Nucleosides and Nucleotides 1.48 1.20 6.95 1.20 

Phages, Prophages, Transposable elements, Plasmids 81.57 75.68 47.07 75.68 

Phosphorus Metabolism 0.00 0.00 0.00 0.02 

Photosynthesis 0.00 0.00 0.00 0.00 

Potassium Metabolism 0.00 0.00 0.00 0.00 

Protein Metabolism 0.00 0.15 0.40 0.23 

Regulation and Cell signaling 0.49 0.15 2.08 0.42 

Respiration 0.00 0.00 0.00 0.00 

RNA Metabolism 0.31 0.52 3.39 1.02 

Secondary Metabolism 0.00 0.00 0.00 0.00 

Stress Response 0.22 0.15 0.00 0.32 

Sulphur Metabolism 0.00 0.02 0.00 0.01 

Virulence, Disease and Defense 0.09 0.14 1.71 0.06 

Functional assignment of “virus-only” sequences was determined using MG-RAST (Keegan et al., 2016) against the SEED nr database. 
Inf = influent, Eff = effluent, Temp = temperate viruses. Top 3 most abundant functional categories in each virome are light blue. 

 

Table VII.  8. Bray-Curtis coefficients describing the similarity of wastewater viromes. 

 Inf Free ML Free ML Temp Eff Free 

Inf Free 0 0.78 0.66 0.88 
ML Free 0.54 0 0.93 0.48 
ML Temp 0.32 0.41 0 0.95 
Eff Free 0.59 0.28 0.47 0 

Bray-Curtis coefficients for predicted genes and functionally assigned “viral-only” reads across all viromes, lower left and upper right 

portion of table respectively. 

 

 


